QwenLM/Qwen模型训练保存报错问题分析与解决方案
2025-05-12 01:31:37作者:秋阔奎Evelyn
问题背景
在使用QwenLM/Qwen项目中的finetune.py脚本进行Qwen-7B-Chat模型的QLoRA微调时,许多开发者遇到了一个典型问题:训练过程可以正常进行,但在保存模型时会出现"Object of type Tensor is not JSON serializable"的错误。这个错误阻碍了训练结果的保存,影响了模型的实际应用。
错误原因深度分析
该问题的根本原因在于transformers库的Trainer类在保存检查点时,尝试将包含Tensor类型数据的训练状态信息序列化为JSON格式。具体来说:
- 在训练过程中,Trainer会记录梯度范数(grad_norm)等训练指标
- 这些指标以Tensor形式存储在内存中
- 当调用_save_checkpoint方法保存模型时,系统尝试将这些Tensor数据转换为JSON格式
- 由于Python的json模块无法直接序列化PyTorch Tensor对象,导致序列化失败
技术细节解析
从技术实现层面来看,这个问题涉及几个关键组件:
- transformers.Trainer:HuggingFace提供的训练框架,负责管理整个训练流程
- 训练状态保存机制:Trainer会定期保存训练状态到TRAINER_STATE_NAME文件
- JSON序列化限制:Python的json模块只能处理基本数据类型,无法处理复杂对象如Tensor
解决方案
针对这个问题,社区提出了几种有效的解决方案:
方案一:降级transformers版本
最直接的解决方法是使用transformers 4.38.0以下版本。新版本中可能引入了更严格的序列化检查,而旧版本对此类情况的处理更为宽松。
pip install transformers<4.38.0
方案二:自定义Trainer类
对于需要保持最新版本transformers的用户,可以通过继承并修改Trainer类来解决这个问题:
class CustomTrainer(Trainer):
def _maybe_log_save_evaluate(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval):
# 将grad_norm转换为float类型
if grad_norm is not None:
grad_norm = float(grad_norm)
super()._maybe_log_save_evaluate(tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval)
这种方法的核心是在保存前将Tensor类型的数据转换为基本数据类型。
方案三:调整deepspeed版本
部分用户反馈,将deepspeed升级到0.13.1版本也可以解决此问题:
pip install deepspeed==0.13.1
最佳实践建议
- 版本控制:在开始训练前,明确记录所有关键库的版本信息,包括peft、transformers、accelerate和deepspeed
- 环境隔离:使用虚拟环境或容器技术隔离训练环境,避免库版本冲突
- 定期保存:增加模型保存频率,避免因保存失败导致大量训练成果丢失
- 日志记录:详细记录训练过程中的各项指标,便于问题排查
总结
QwenLM/Qwen模型训练保存问题是一个典型的深度学习框架兼容性问题。通过理解其背后的技术原理,开发者可以选择最适合自己项目的解决方案。无论是通过版本降级、自定义Trainer类还是调整依赖库版本,都能有效解决这个保存问题,确保模型训练成果得以完整保存。
对于深度学习开发者而言,这类问题的解决不仅需要掌握具体的技术方案,更需要培养对训练框架内部机制的理解能力,这样才能在遇到类似问题时快速定位并解决。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
198
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
426
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694