QwenLM/Qwen模型训练保存报错问题分析与解决方案
2025-05-12 01:58:16作者:秋阔奎Evelyn
问题背景
在使用QwenLM/Qwen项目中的finetune.py脚本进行Qwen-7B-Chat模型的QLoRA微调时,许多开发者遇到了一个典型问题:训练过程可以正常进行,但在保存模型时会出现"Object of type Tensor is not JSON serializable"的错误。这个错误阻碍了训练结果的保存,影响了模型的实际应用。
错误原因深度分析
该问题的根本原因在于transformers库的Trainer类在保存检查点时,尝试将包含Tensor类型数据的训练状态信息序列化为JSON格式。具体来说:
- 在训练过程中,Trainer会记录梯度范数(grad_norm)等训练指标
- 这些指标以Tensor形式存储在内存中
- 当调用_save_checkpoint方法保存模型时,系统尝试将这些Tensor数据转换为JSON格式
- 由于Python的json模块无法直接序列化PyTorch Tensor对象,导致序列化失败
技术细节解析
从技术实现层面来看,这个问题涉及几个关键组件:
- transformers.Trainer:HuggingFace提供的训练框架,负责管理整个训练流程
- 训练状态保存机制:Trainer会定期保存训练状态到TRAINER_STATE_NAME文件
- JSON序列化限制:Python的json模块只能处理基本数据类型,无法处理复杂对象如Tensor
解决方案
针对这个问题,社区提出了几种有效的解决方案:
方案一:降级transformers版本
最直接的解决方法是使用transformers 4.38.0以下版本。新版本中可能引入了更严格的序列化检查,而旧版本对此类情况的处理更为宽松。
pip install transformers<4.38.0
方案二:自定义Trainer类
对于需要保持最新版本transformers的用户,可以通过继承并修改Trainer类来解决这个问题:
class CustomTrainer(Trainer):
def _maybe_log_save_evaluate(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval):
# 将grad_norm转换为float类型
if grad_norm is not None:
grad_norm = float(grad_norm)
super()._maybe_log_save_evaluate(tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval)
这种方法的核心是在保存前将Tensor类型的数据转换为基本数据类型。
方案三:调整deepspeed版本
部分用户反馈,将deepspeed升级到0.13.1版本也可以解决此问题:
pip install deepspeed==0.13.1
最佳实践建议
- 版本控制:在开始训练前,明确记录所有关键库的版本信息,包括peft、transformers、accelerate和deepspeed
- 环境隔离:使用虚拟环境或容器技术隔离训练环境,避免库版本冲突
- 定期保存:增加模型保存频率,避免因保存失败导致大量训练成果丢失
- 日志记录:详细记录训练过程中的各项指标,便于问题排查
总结
QwenLM/Qwen模型训练保存问题是一个典型的深度学习框架兼容性问题。通过理解其背后的技术原理,开发者可以选择最适合自己项目的解决方案。无论是通过版本降级、自定义Trainer类还是调整依赖库版本,都能有效解决这个保存问题,确保模型训练成果得以完整保存。
对于深度学习开发者而言,这类问题的解决不仅需要掌握具体的技术方案,更需要培养对训练框架内部机制的理解能力,这样才能在遇到类似问题时快速定位并解决。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660