QwenLM/Qwen模型训练保存报错问题分析与解决方案
2025-05-12 07:55:55作者:秋阔奎Evelyn
问题背景
在使用QwenLM/Qwen项目中的finetune.py脚本进行Qwen-7B-Chat模型的QLoRA微调时,许多开发者遇到了一个典型问题:训练过程可以正常进行,但在保存模型时会出现"Object of type Tensor is not JSON serializable"的错误。这个错误阻碍了训练结果的保存,影响了模型的实际应用。
错误原因深度分析
该问题的根本原因在于transformers库的Trainer类在保存检查点时,尝试将包含Tensor类型数据的训练状态信息序列化为JSON格式。具体来说:
- 在训练过程中,Trainer会记录梯度范数(grad_norm)等训练指标
- 这些指标以Tensor形式存储在内存中
- 当调用_save_checkpoint方法保存模型时,系统尝试将这些Tensor数据转换为JSON格式
- 由于Python的json模块无法直接序列化PyTorch Tensor对象,导致序列化失败
技术细节解析
从技术实现层面来看,这个问题涉及几个关键组件:
- transformers.Trainer:HuggingFace提供的训练框架,负责管理整个训练流程
- 训练状态保存机制:Trainer会定期保存训练状态到TRAINER_STATE_NAME文件
- JSON序列化限制:Python的json模块只能处理基本数据类型,无法处理复杂对象如Tensor
解决方案
针对这个问题,社区提出了几种有效的解决方案:
方案一:降级transformers版本
最直接的解决方法是使用transformers 4.38.0以下版本。新版本中可能引入了更严格的序列化检查,而旧版本对此类情况的处理更为宽松。
pip install transformers<4.38.0
方案二:自定义Trainer类
对于需要保持最新版本transformers的用户,可以通过继承并修改Trainer类来解决这个问题:
class CustomTrainer(Trainer):
def _maybe_log_save_evaluate(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval):
# 将grad_norm转换为float类型
if grad_norm is not None:
grad_norm = float(grad_norm)
super()._maybe_log_save_evaluate(tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval)
这种方法的核心是在保存前将Tensor类型的数据转换为基本数据类型。
方案三:调整deepspeed版本
部分用户反馈,将deepspeed升级到0.13.1版本也可以解决此问题:
pip install deepspeed==0.13.1
最佳实践建议
- 版本控制:在开始训练前,明确记录所有关键库的版本信息,包括peft、transformers、accelerate和deepspeed
- 环境隔离:使用虚拟环境或容器技术隔离训练环境,避免库版本冲突
- 定期保存:增加模型保存频率,避免因保存失败导致大量训练成果丢失
- 日志记录:详细记录训练过程中的各项指标,便于问题排查
总结
QwenLM/Qwen模型训练保存问题是一个典型的深度学习框架兼容性问题。通过理解其背后的技术原理,开发者可以选择最适合自己项目的解决方案。无论是通过版本降级、自定义Trainer类还是调整依赖库版本,都能有效解决这个保存问题,确保模型训练成果得以完整保存。
对于深度学习开发者而言,这类问题的解决不仅需要掌握具体的技术方案,更需要培养对训练框架内部机制的理解能力,这样才能在遇到类似问题时快速定位并解决。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
583
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
388
仓颉编程语言运行时与标准库。
Cangjie
130
401
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205