QwenLM/Qwen项目中的3090显卡微调显存优化实践
2025-05-12 17:23:31作者:贡沫苏Truman
问题背景
在使用QwenLM/Qwen项目进行模型微调时,开发者遇到了一个典型问题:在NVIDIA GeForce RTX 3090 12GB显卡上尝试微调1.4B模型时出现了显存不足(OOM)的错误。这个问题实际上反映了当前大模型微调中常见的硬件资源挑战。
问题分析
错误现象
当开发者运行finetune_lora_single_gpu.sh脚本时,系统报出CUDA显存不足的错误。具体表现为:
- 训练过程中尝试分配2MB显存时失败
- 显卡总容量为12GB,已分配约10.36GB
- 剩余可用显存仅22.06MB
- PyTorch总共保留了10.45GB显存
根本原因
深入分析后,发现存在几个关键问题:
-
模型版本混淆:开发者尝试微调的是1.4B模型,而Qwen项目实际上提供的是1.8B模型,这表明可能存在模型版本选择错误。
-
模型类型不当:微调脚本加载的是基础模型而非Chat模型。根据项目文档,基础模型的LoRA微调需要更多显存,12GB显存不足以支持。
-
系统环境问题:内核版本(5.4.0)低于推荐的最低版本(5.5.0),这可能导致进程挂起风险。
解决方案
正确模型选择
- 使用1.8B-Chat模型替代1.4B基础模型
- 确认模型路径指向正确的Chat模型版本
显存优化策略
-
单卡微调配置:
- 设置
CUDA_VISIBLE_DEVICES=0限制使用单卡 - 调整batch size和gradient accumulation steps平衡显存使用
- 设置
-
多卡微调观察:
- 双卡模式下显存占用会自然分布
- 注意实际batch size会随GPU数量线性增加
-
系统级优化:
- 升级Linux内核至5.5.0或更高版本
- 监控并管理非训练进程的显存占用(如Xorg)
实践验证
实施上述解决方案后:
- 单卡模式下显存占用降至约6.5GB
- 另一张显卡仅保留系统必需的约10MB显存
- 训练过程稳定运行,不再出现OOM错误
经验总结
-
模型选择:大模型微调时务必确认模型类型和版本,Chat模型通常比基础模型更适合资源受限环境。
-
显存管理:理解PyTorch的显存分配机制,合理设置训练参数,必要时使用梯度累积等技术。
-
环境配置:保持系统环境符合推荐配置,避免因底层问题导致训练不稳定。
-
监控工具:使用nvidia-smi等工具实时监控显存使用情况,及时发现异常占用。
通过这次实践,我们验证了在12GB显存的消费级显卡上微调1.8B参数量的Qwen-Chat模型的可行性,为类似资源条件下的模型微调提供了有价值的参考方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
392
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
582
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
164
暂无简介
Dart
765
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350