imbalanced-learn项目中SMOTEENN采样方法的特性分析
2025-05-31 22:50:04作者:余洋婵Anita
概述
在机器学习分类任务中,处理类别不平衡数据集是一个常见挑战。imbalanced-learn库提供了多种采样方法来应对这一问题,其中SMOTEENN是一种结合过采样和欠采样的混合方法。本文将深入分析SMOTEENN方法的工作原理及其在实际应用中的表现特性。
SMOTEENN方法原理
SMOTEENN是两种采样技术的组合:
- SMOTE(Synthetic Minority Over-sampling Technique):通过合成少数类样本来增加少数类的样本数量
- ENN(Edited Nearest Neighbours):基于最近邻规则删除噪声样本和边界样本
这种组合方法的理论优势在于:先通过SMOTE增加少数类样本,再通过ENN清理可能引入的噪声样本,从而获得更清晰的类边界。
实际应用中的观察
在实际使用中,开发者可能会发现SMOTEENN处理后数据集的不平衡程度有时不减反增。这种现象源于ENN的工作机制:
- SMOTE阶段会平衡两类样本数量
- ENN阶段会基于最近邻规则删除"可疑"样本,包括:
- 被多数类样本包围的少数类样本
- 被少数类样本包围的多数类样本
由于原始多数类通常具有更丰富的样本分布,ENN处理后可能会保留更多多数类样本,导致最终数据集仍呈现一定不平衡。
方法设计的深层考量
这种看似"反直觉"的结果实际上是设计使然。SMOTEENN的核心目标并非严格平衡类别分布,而是:
- 通过SMOTE缓解少数类样本不足的问题
- 通过ENN提高分类边界质量
- 最终目标是提升分类器性能而非追求样本数量绝对平衡
自定义调整策略
对于需要更严格控制类别平衡的场景,开发者可以通过以下方式调整SMOTEENN行为:
from imblearn.under_sampling import EditedNearestNeighbours
from imblearn.combine import SMOTEENN
# 自定义ENN参数
custom_enn = EditedNearestNeighbours(
sampling_strategy='auto', # 可调整为'all'或指定比例
n_neighbors=3, # 调整近邻数
kind_sel='all' # 选择删除策略
)
smote_enn = SMOTEENN(enn=custom_enn)
实践建议
- 不要单纯依赖样本数量评估采样效果,应结合分类性能指标
- 对于不同数据集,可能需要尝试不同的近邻参数(k值)
- 可以尝试SMOTE与其他欠采样方法(如Tomek Links)的组合
- 始终在交叉验证框架内评估采样方法的效果
结论
SMOTEENN作为混合采样方法,其价值在于改善分类边界而非简单平衡样本数量。理解这一设计理念有助于开发者更合理地使用该方法,并根据实际需求进行调整。在实际项目中,建议通过实验确定最适合当前数据和任务的采样策略组合。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
310
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1