探索数据不平衡难题:imbalanced-learn库
2024-05-22 09:48:59作者:齐冠琰
在机器学习领域,一个常见的挑战是处理类别不平衡的数据集。当某一类样本数量远超其他类时,这会对模型的性能造成严重影响。为了解决这个问题,我们向您推荐一个强大的Python工具——imbalanced-learn。这是一个基于scikit-learn框架的扩展库,提供了多种重采样技术,旨在帮助您在不平衡数据集上构建更公正、更高效的分类模型。
项目介绍
imbalanced-learn是一个开源项目,致力于为数据科学家提供一系列重采样方法,如欠采样、过采样和集成策略。该项目不仅包括了基础的算法实现,还注重与主流数据分析库(如NumPy, SciPy和Pandas)的良好兼容性,以及友好的API设计,让使用者能够轻松地将这些方法融入到现有的机器学习流程中。
技术分析
imbalanced-learn的核心功能包括:
- 欠采样:通过删除多数类中的样本,使各类别样本数量接近,如RandomUnderSampler。
- 过采样:通过生成多数类的新样本或复制少数类的样本,增加少数类的样本量,如SMOTE(Synthetic Minority Over-sampling Technique)。
- 集成策略:结合欠采样和过采样,如SMOKE(SMOTE + Tomek links)。
所有这些技术均遵循scikit-learn的设计哲学,可以方便地与其他scikit-learn组件(如预处理和模型选择)无缝对接。
应用场景
imbalanced-learn广泛应用于各种现实世界的问题,例如:
- 医疗诊断:如肿瘤检测,正常样本远多于异常样本。
- 银行欺诈检测:欺诈交易少而重要。
- 图像识别:某些目标类别在图像中出现频率低但关键。
项目特点
- 兼容性:与scikit-learn完全兼容,并且可直接嵌入其pipeline。
- 灵活性:支持多种重采样策略,可以根据具体问题选择合适的方法。
- 易于使用:清晰的API文档和示例代码,让开发者快速上手。
- 持续更新:活跃的开发社区,定期维护和更新,确保最新版本能适应不断发展的机器学习环境。
对于想要改善不平衡数据集上模型表现的开发者来说,imbalanced-learn是一个不可或缺的工具。立即安装并尝试,开启您的公平分类之旅吧!
pip install -U imbalanced-learn
探索imbalanced-learn的潜力,让我们一起打破数据不平衡的魔咒!
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146