IBM Cloud Pak for Data 中 Watson Knowledge Catalog 数据治理实战教程
前言
在当今数据驱动的商业环境中,企业面临着如何有效管理和治理海量数据的挑战。IBM Cloud Pak for Data 平台上的 Watson Knowledge Catalog (WKC) 提供了一套完整的解决方案,帮助企业实现数据资产的发现、准备和理解。本教程将带您深入了解如何使用 WKC 解决企业数据治理的关键问题。
技术概览
Watson Knowledge Catalog 是 IBM Cloud Pak for Data 平台的核心组件之一,它提供了以下关键功能:
- 数据资产目录:集中管理企业所有数据资产
- 数据治理:实施数据保护规则和访问控制
- 元数据管理:通过业务术语、数据分类等增强数据理解
- 数据质量:确保数据的准确性和一致性
环境准备
在开始本教程前,请确保您已具备:
- IBM Cloud Pak for Data 平台访问权限
- Watson Knowledge Catalog 服务已部署
- 创建和管理目录的管理员权限
实战步骤详解
第一步:创建数据目录并添加数据
数据目录是 WKC 的核心组织单元,类似于文件系统中的文件夹,但功能更为强大。
创建目录步骤:
- 通过平台导航菜单进入"组织 > 所有目录"
- 点击"创建目录"按钮
- 输入目录名称(如"电信数据目录")
- 勾选"强制执行数据保护规则"选项
- 确认创建
添加数据资产的三种方式:
-
本地文件上传:
- 下载示例 CSV 文件
- 通过"添加到目录"功能选择本地文件
- 上传并等待处理完成
-
数据库连接:
- 创建到 Db2 Warehouse 等数据库的连接
- 测试连接并保存配置
- 连接成功后可在目录中查看
-
虚拟化数据:
- 选择已连接的虚拟化数据源
- 浏览并选择需要添加的表
- 完成添加后可在项目中直接使用
第二步:协作与访问控制
WKC 提供了精细的权限管理功能,确保数据安全的同时促进团队协作。
添加协作者:
- 进入目录的"访问控制"选项卡
- 点击"添加协作者"按钮
- 搜索并选择用户
- 分配适当角色(管理员/编辑者/查看者)
数据预览与评审:
- 点击数据资产名称查看详情
- 在"预览"选项卡中查看数据样本
- 使用"评审"选项卡添加注释和反馈
第三步:构建分类体系
分类体系是数据治理的基础,WKC 支持两种创建方式:
方法一:CSV 批量导入
- 准备包含分类结构的 CSV 文件
- 通过导入功能上传文件
- 选择合并选项(如替换所有值)
- 完成导入并验证结果
方法二:手动创建
- 在分类管理界面点击"创建分类"
- 输入分类名称和描述
- 可选设置分类类型(如业务术语)
- 创建子分类构建层次结构
第四步:定义数据类
数据类描述了数据的格式和特征,WKC 既支持自动推断也允许自定义。
创建自定义数据类:
- 进入"数据类"管理界面
- 点击"新建数据类"(如"字母数字")
- 设置相关属性和描述
- 保存为草稿或直接发布
应用数据类:
- 在目录中找到目标数据列
- 打开列信息面板
- 搜索并选择合适的数据类
- 保存更改
第五步:业务术语管理
业务术语是连接技术与业务的桥梁,确保全企业对数据理解一致。
创建业务术语:
- 进入业务术语管理界面
- 创建新术语(如"计费")
- 添加详细定义和说明
- 发布供全企业使用
关联业务术语:
- 在数据列信息面板中
- 点击业务术语编辑图标
- 搜索并选择相关术语
- 应用更改
第六步:实施数据保护策略
数据保护是治理的核心,WKC 提供了灵活的规则定义方式。
创建保护规则:
- 进入规则管理界面
- 选择创建"数据保护规则"
- 定义规则名称和类型
- 设置条件(如包含特定业务术语)
- 配置保护动作(如数据掩码)
规则效果验证:
- 以不同权限用户登录
- 查看受保护数据的显示差异
- 确认敏感信息已被适当处理
最佳实践建议
- 分类体系设计:建议从企业级顶层设计开始,逐步细化
- 术语标准化:建立术语管理流程,确保一致性
- 渐进式治理:从关键数据开始,逐步扩大治理范围
- 角色分工:明确数据管理员、技术专家和业务用户的责任
总结
通过本教程,您已经掌握了 Watson Knowledge Catalog 的核心功能和使用方法。从创建目录、添加数据,到建立分类体系、定义业务术语,再到实施数据保护策略,WKC 提供了一套完整的数据治理解决方案。这些功能协同工作,能够帮助企业实现:
- 数据资产的集中管理和发现
- 敏感数据的保护和合规
- 跨团队的数据理解和协作
- 数据质量的持续监控和改进
作为 IBM Cloud Pak for Data 学习路径的一部分,掌握 WKC 是成为数据治理专家的关键一步。建议您继续探索平台的其他功能,如 Watson Machine Learning 和 AutoAI,构建完整的数据与 AI 解决方案。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00