OpenBAS 1.14.0 版本发布:增强代理权限与完善文档体系
OpenBAS 是一个开源的网络安全测试平台,旨在帮助安全团队进行实战化演练和红蓝对抗训练。该平台提供了丰富的注入器、执行器和代理功能,能够模拟各种攻击场景,评估企业安全防御体系的健壮性。最新发布的 1.14.0 版本带来了多项重要改进,特别是在代理权限管理和文档完善方面。
代理权限管理升级
本次版本最显著的改进之一是代理权限管理机制的增强。现在用户可以灵活选择代理的安装方式:
-
多用户代理支持:可以在同一终端上安装多个代理实例,每个实例可以配置不同的用户权限。这一改进使得测试场景更加灵活,能够模拟不同权限级别的攻击行为。
-
权限级别选择:用户可以选择以系统账户或会话用户身份运行代理。系统账户模式保留了原有的高权限执行能力,而会话用户模式则更适合模拟普通用户权限下的攻击场景。
-
安装流程优化:新的安装向导提供了清晰的步骤指引,即使是初次使用的用户也能轻松完成代理部署。安装过程中会明确提示当前选择的权限级别,避免配置错误。
这一改进使得安全测试更加贴近真实攻击场景,红队可以更精确地模拟攻击者从初始入侵到权限提升的全过程。
文档体系全面升级
开发团队投入大量精力重构和完善了文档体系,重点包括:
-
代理安装指南:详细说明了各种安装场景下的配置方法,包括单用户和多用户模式的选择与切换。
-
Nmap注入器使用:完整记录了资产发现模块的操作流程,帮助用户快速掌握网络探测功能。
-
资产发现功能:新增了关于自动化漏洞扫描和资产管理的详细说明。
-
注入模板导入导出:提供了标准化模板的交换方法,方便团队间共享测试用例。
-
遥测数据说明:透明公开了数据收集的范围和用途,消除用户隐私顾虑。
这些文档不仅包含操作步骤,还提供了最佳实践和常见问题解答,大幅降低了平台的学习曲线。
其他重要改进
-
遥测功能引入:新增了匿名化的使用数据收集,仅包含实例数量、用户规模等宏观指标,不涉及任何业务数据或个人隐私。管理员可以通过配置灵活控制数据上报。
-
资产组期望管理:统一了资产组和团队的期望值管理逻辑,使测试结果评估更加一致。
-
多语言支持增强:优化了国际化框架,为后续多语言版本打下基础。
-
稳定性提升:修复了包括注入状态显示异常、菜单排序问题、端点视图显示异常等在内的十余个缺陷。
技术实现亮点
-
数据库优化:为标签关联表添加了外键约束,提高了数据完整性。
-
进程监控增强:为Caldera植入体添加了父进程名称检测签名,提高了对抗模拟的准确性。
-
并发控制:通过注入ID锁定机制避免了植入回调的线程冲突问题。
-
前端体验优化:统一了各种表单的主题样式,修复了组织字段的显示异常问题。
OpenBAS 1.14.0 通过上述改进,进一步强化了其作为专业网络安全测试平台的能力。特别是代理权限管理的灵活性提升,使得红蓝对抗演练能够覆盖更全面的攻击场景。完善的文档体系也使得平台更易于在企业环境中推广使用。对于需要进行实战化安全测试的团队来说,这个版本值得升级体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00