AlphaStar Implementation 项目安装与配置指南
2025-04-18 03:37:07作者:魏侃纯Zoe
1. 项目基础介绍
AlphaStar Implementation 是一个开源项目,它实现了 DeepMind 的 AlphaStar 代理的一个版本,用于玩 StarCraft II 游戏。该项目是用 Python 编写的,并使用了 TensorFlow 和 PySC2 等库。项目的主要目标是创建一个可以在 StarCraft II 中自主学习的 AI 代理。
2. 项目使用的关键技术和框架
- Python:作为主要的编程语言。
- TensorFlow:一个用于机器学习的开源框架,用于构建和训练神经网络。
- PySC2:DeepMind 开发的 Python 库,用于与 StarCraft II 进行交互。
- LSTM:长短期记忆网络,一种特殊的 RNN(递归神经网络),用于处理序列数据。
- FullyConv:全卷积网络,用于图像识别和分类。
- Reinforcement Learning:强化学习,一种机器学习方法,用于让模型通过与环境的交互来学习。
3. 安装和配置准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Ubuntu 20.04
- Python:Python 3.7 或 3.8
- 依赖库:TensorFlow-gpu 2.3.0, TensorFlow-probability 0.11.0, Hickle 4.0.4, Pygame 1.9.6, Sklearn, ZeroMQ
- 硬件:NVIDIA RTX A6000 x 1, 128GB RAM
- StarCraft II:客户端版本 4.8.2
请按照以下步骤进行安装和配置:
步骤 1: 克隆项目
首先,克隆项目到本地环境:
git clone https://github.com/kimbring2/AlphaStar_Implementation.git
步骤 2: 安装依赖
安装项目所需的 Python 库。确保您已经安装了 TensorFlow 和其他相关库:
pip install tensorflow-gpu==2.3.0 tensorflow-probability==0.11.0 hickle==4.0.4 pygame==1.9.6 sklearn zmq
步骤 3: 设置 StarCraft II
确保您已经安装了 StarCraft II 客户端版本 4.8.2,并且已经安装了所需的地图和补丁。
步骤 4: 准备 replay 文件
您需要收集大约 1000 个 StarCraft II 的 replay 文件,并将它们转换为 hkl 格式以便训练。可以使用以下命令进行转换:
python trajectory_generator.py --replay_path [你的 replay 文件路径] --saving_path [你的保存路径]
步骤 5: 运行项目
在完成所有准备工作之后,您可以使用以下命令开始训练或测试项目:
# 开始强化学习训练
./run_reinforcement_learning.sh [环境数量] [是否使用 GPU] [环境名称] [模型名称]
# 停止训练
./stop.sh
请确保根据您的系统配置和需求调整命令中的参数。按照上述步骤,您应该能够成功安装和配置 AlphaStar Implementation 项目。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.3 K
暂无简介
Dart
621
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
263
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
793
77