AlphaStar Implementation 项目安装与配置指南
2025-04-18 15:08:20作者:魏侃纯Zoe
1. 项目基础介绍
AlphaStar Implementation 是一个开源项目,它实现了 DeepMind 的 AlphaStar 代理的一个版本,用于玩 StarCraft II 游戏。该项目是用 Python 编写的,并使用了 TensorFlow 和 PySC2 等库。项目的主要目标是创建一个可以在 StarCraft II 中自主学习的 AI 代理。
2. 项目使用的关键技术和框架
- Python:作为主要的编程语言。
- TensorFlow:一个用于机器学习的开源框架,用于构建和训练神经网络。
- PySC2:DeepMind 开发的 Python 库,用于与 StarCraft II 进行交互。
- LSTM:长短期记忆网络,一种特殊的 RNN(递归神经网络),用于处理序列数据。
- FullyConv:全卷积网络,用于图像识别和分类。
- Reinforcement Learning:强化学习,一种机器学习方法,用于让模型通过与环境的交互来学习。
3. 安装和配置准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Ubuntu 20.04
- Python:Python 3.7 或 3.8
- 依赖库:TensorFlow-gpu 2.3.0, TensorFlow-probability 0.11.0, Hickle 4.0.4, Pygame 1.9.6, Sklearn, ZeroMQ
- 硬件:NVIDIA RTX A6000 x 1, 128GB RAM
- StarCraft II:客户端版本 4.8.2
请按照以下步骤进行安装和配置:
步骤 1: 克隆项目
首先,克隆项目到本地环境:
git clone https://github.com/kimbring2/AlphaStar_Implementation.git
步骤 2: 安装依赖
安装项目所需的 Python 库。确保您已经安装了 TensorFlow 和其他相关库:
pip install tensorflow-gpu==2.3.0 tensorflow-probability==0.11.0 hickle==4.0.4 pygame==1.9.6 sklearn zmq
步骤 3: 设置 StarCraft II
确保您已经安装了 StarCraft II 客户端版本 4.8.2,并且已经安装了所需的地图和补丁。
步骤 4: 准备 replay 文件
您需要收集大约 1000 个 StarCraft II 的 replay 文件,并将它们转换为 hkl 格式以便训练。可以使用以下命令进行转换:
python trajectory_generator.py --replay_path [你的 replay 文件路径] --saving_path [你的保存路径]
步骤 5: 运行项目
在完成所有准备工作之后,您可以使用以下命令开始训练或测试项目:
# 开始强化学习训练
./run_reinforcement_learning.sh [环境数量] [是否使用 GPU] [环境名称] [模型名称]
# 停止训练
./stop.sh
请确保根据您的系统配置和需求调整命令中的参数。按照上述步骤,您应该能够成功安装和配置 AlphaStar Implementation 项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355