探索星际争霸II的未来:mini-AlphaStar
2024-05-23 07:46:42作者:凤尚柏Louis
项目介绍
mini-AlphaStar 是一个缩小版的DeepMind的[AlphaStar]项目,用于玩《星际争霸II》的智能AI。与原版不同,mini-AS设计为可调整和小规模,可以在普通的商业服务器机器上进行训练。项目遵循“奥卡姆剃刀原则”,保持简单且易于理解,主要依赖于PyTorch,降低了学习成本。
左图:游戏初期表现;右图:游戏中期表现。
左图:首次攻击;右图:第二次攻击。
技术分析
mini-AlphaStar的核心是深度神经网络架构(在alphastarmini.core.arch中)和强化学习算法(在alphastarmini.core.rl中)。项目还包括多代理联赛训练(alphastarmini.core.ma)和监督学习(alphastarmini.core.sl)。这些组件共同模拟了AlphaStar的基本逻辑,使AI能在单机环境中学习并进化。
应用场景
- 教育:为学生和研究人员提供了一个易于理解和修改的AI框架,让他们能够学习和研究深度强化学习。
- 游戏开发:开发者可以利用该项目来创建自己的游戏AI,或者改进现有的游戏AI策略。
- 算法优化:作为一个基础平台,mini-AlphaStar可以用来测试不同的超参数设置和算法改进。
项目特点
- 易用性:简化了依赖关系,仅依赖PyTorch,使得代码更易于理解和维护。
- 可调整性:允许在较小的规模上训练,适应不同的计算资源。
- 效率:通过多进程多线程的方式加速训练过程。
- 灵活性:可以基于预训练模型进行进一步的强化学习,以改善性能。
最新进展
当前版本v_1.09修复了一些已知问题,提高了SL模型训练效果,并提供了预训练模型和最终RL模型,便于用户直接复现结果。
使用说明
首先确保安装了PyTorch(1.5或更高版本),以及requirements.txt中的其他依赖。然后运行run.py脚本来启动训练,可以根据注释选择相应训练阶段。
想要深入研究,请确保有足够的时间和训练资源,包括高性能GPU服务器。此外,提供了详细使用指南(如如何下载和处理SC2回放文件)以帮助你开始。
迷你版的AlphaStar不仅是一个技术上的挑战,也是探索AI前沿的窗口。无论你是对深度学习感兴趣的学生,还是寻求创新的游戏开发者,都将从这个项目中受益。立即加入我们,一起探索星际争霸II的智能玩法!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92