RAG 深度揭秘:从源码到实践
2024-08-18 23:27:38作者:凌朦慧Richard
本指南旨在带领您深入了解 GitHub 上的开源项目 rag-demystified,该项目展示了如何构建一个由大型语言模型(LLMs)驱动的高级检索增强生成(Retrieval-Augmented Generation, 简称RAG)管道。通过这个教程,我们将逐个拆解项目的核心组件,包括目录结构、启动文件以及配置文件,帮助您快速上手并自定义您的RAG系统。
1. 项目目录结构及介绍
项目的基本架构是精心设计的,以确保可维护性和易扩展性。以下是主要目录及其大致内容:
rag-demystified/
│
├── src # 核心源代码所在目录
│ ├── model # 包含RAG模型的相关实现
│ ├── data # 数据处理和预处理脚本
│ ├── utils # 工具函数集,如数据加载器、配置解析等
│ └── main.py # 应用入口,启动程序
│
├── config # 配置文件夹
│ ├── rag_config.yaml # RAG系统的主配置文件
│
├── datasets # 示例或测试数据集存放位置
│
├── requirements.txt # 项目所需依赖库列表
└── README.md # 项目说明文档
src 目录包含了实现RAG核心逻辑的所有Python源代码;config 目录存储着配置文件,用于定义模型参数、数据路径和其他运行时设置;datasets 则用来保存训练或验证所需的外部数据集;requirements.txt 列出所有必需的Python包,保证环境一致性。
2. 项目的启动文件介绍
main.py
这是项目的启动点,负责初始化RAG系统、加载配置、准备数据,并执行模型的训练或者推断流程。通常包含以下关键步骤:
- 加载配置: 使用YAML配置文件来设定模型、数据和实验参数。
- 数据准备: 加载或预处理数据集,准备用于模型训练或评估。
- 模型实例化: 基于配置创建RAG模型实例。
- 训练循环或服务启动: 根据需求,执行模型训练过程或启动服务,提供实时问答功能。
3. 项目的配置文件介绍
rag_config.yaml
配置文件是控制RAG行为的中枢神经。它覆盖了从模型架构细节到数据路径的广泛设置,示例如下:
model:
type: "transformer" # 模型类型,通常是基于Transformer的架构
pretrained_model_path: "./pretrained_model/" # 预训练模型的路径
data:
train_file: "datasets/train.jsonl" # 训练数据文件
index_path: "index.faiss" # FAISS索引文件路径
training:
epochs: 5 # 训练轮次
batch_size: 8 # 批次大小
配置文件允许开发者精细调整模型的行为和性能,包括但不限于模型选择、训练超参数、数据源指定等,确保项目的灵活性和适应不同场景的能力。
以上是对rag-demystified项目结构和关键文件的简要介绍,此教程为快速入门提供了基础框架。实际操作中,请深入阅读项目中的具体代码注释和文档,以便更深入地理解其工作机制和细节。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C099
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
235
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705