RAG-GPT 开源项目教程
2024-09-25 09:09:36作者:董灵辛Dennis
1. 项目介绍
RAG-GPT 是一个利用大型语言模型(LLM)和检索增强生成(RAG)技术构建的开源项目。它能够从用户自定义的知识库中学习,并提供与上下文相关的答案,适用于广泛的查询需求。RAG-GPT 确保了快速且准确的信息检索,适用于构建智能客服系统。
2. 项目快速启动
2.1 下载项目代码
首先,克隆 RAG-GPT 的代码库到本地:
git clone https://github.com/gpt-open/rag-gpt.git
cd rag-gpt
2.2 配置环境变量
在启动 RAG-GPT 服务之前,需要配置相关的环境变量。以下是使用 OpenAI 作为 LLM 基础的配置示例:
cp env_of_openai .env
编辑 .env 文件,配置以下变量:
LLM_NAME="OpenAI"
OPENAI_API_KEY="your_openai_api_key"
GPT_MODEL_NAME="gpt-4-turbo"
MIN_RELEVANCE_SCORE=0.4
BOT_TOPIC="YourBotName"
URL_PREFIX="http://127.0.0.1:7000/"
USE_PREPROCESS_QUERY=1
USE_RERANKING=1
USE_DEBUG=0
USE_LLAMA_PARSE=0
LLAMA_CLOUD_API_KEY="your_llama_cloud_api_key"
USE_GPT4O=0
2.3 部署 RAG-GPT
2.3.1 使用 Docker 部署
如果你已经安装了 Docker,可以使用以下命令快速部署 RAG-GPT:
docker-compose up -d
2.3.2 从源代码部署
如果你更喜欢从源代码部署,可以按照以下步骤操作:
-
设置 Python 运行环境:
python3 -m venv venv source venv/bin/activate -
安装依赖:
pip install -r requirements.txt -
创建 SQLite 数据库:
python create_sqlite_db.py -
启动服务:
./start.sh
3. 应用案例和最佳实践
3.1 智能客服系统
RAG-GPT 可以用于构建智能客服系统,通过学习企业的知识库,自动回答客户的问题,提高客服效率。
3.2 知识问答系统
在教育、医疗等领域,RAG-GPT 可以用于构建知识问答系统,帮助用户快速获取专业知识。
3.3 内容推荐系统
结合用户的历史查询和偏好,RAG-GPT 可以用于构建个性化的内容推荐系统,提升用户体验。
4. 典型生态项目
4.1 LangChain
LangChain 是一个用于构建语言模型应用的开源框架,与 RAG-GPT 结合使用,可以进一步提升语言模型的能力。
4.2 OpenAI GPT-4
OpenAI 的 GPT-4 模型是 RAG-GPT 的核心支持模型之一,提供了强大的自然语言处理能力。
4.3 ZhipuAI
ZhipuAI 是另一个支持的 LLM 平台,提供了多种语言模型,适用于不同的应用场景。
通过以上步骤,你可以快速启动并使用 RAG-GPT 项目,构建自己的智能应用。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
242
2.38 K
仓颉编译器源码及 cjdb 调试工具。
C++
116
85
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
405
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
79
113
仓颉编程语言运行时与标准库。
Cangjie
123
98
仓颉编程语言测试用例。
Cangjie
34
71
暂无简介
Dart
539
118
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
591
116