RAG-GPT 开源项目教程
2024-09-25 09:09:36作者:董灵辛Dennis
1. 项目介绍
RAG-GPT 是一个利用大型语言模型(LLM)和检索增强生成(RAG)技术构建的开源项目。它能够从用户自定义的知识库中学习,并提供与上下文相关的答案,适用于广泛的查询需求。RAG-GPT 确保了快速且准确的信息检索,适用于构建智能客服系统。
2. 项目快速启动
2.1 下载项目代码
首先,克隆 RAG-GPT 的代码库到本地:
git clone https://github.com/gpt-open/rag-gpt.git
cd rag-gpt
2.2 配置环境变量
在启动 RAG-GPT 服务之前,需要配置相关的环境变量。以下是使用 OpenAI 作为 LLM 基础的配置示例:
cp env_of_openai .env
编辑 .env
文件,配置以下变量:
LLM_NAME="OpenAI"
OPENAI_API_KEY="your_openai_api_key"
GPT_MODEL_NAME="gpt-4-turbo"
MIN_RELEVANCE_SCORE=0.4
BOT_TOPIC="YourBotName"
URL_PREFIX="http://127.0.0.1:7000/"
USE_PREPROCESS_QUERY=1
USE_RERANKING=1
USE_DEBUG=0
USE_LLAMA_PARSE=0
LLAMA_CLOUD_API_KEY="your_llama_cloud_api_key"
USE_GPT4O=0
2.3 部署 RAG-GPT
2.3.1 使用 Docker 部署
如果你已经安装了 Docker,可以使用以下命令快速部署 RAG-GPT:
docker-compose up -d
2.3.2 从源代码部署
如果你更喜欢从源代码部署,可以按照以下步骤操作:
-
设置 Python 运行环境:
python3 -m venv venv source venv/bin/activate
-
安装依赖:
pip install -r requirements.txt
-
创建 SQLite 数据库:
python create_sqlite_db.py
-
启动服务:
./start.sh
3. 应用案例和最佳实践
3.1 智能客服系统
RAG-GPT 可以用于构建智能客服系统,通过学习企业的知识库,自动回答客户的问题,提高客服效率。
3.2 知识问答系统
在教育、医疗等领域,RAG-GPT 可以用于构建知识问答系统,帮助用户快速获取专业知识。
3.3 内容推荐系统
结合用户的历史查询和偏好,RAG-GPT 可以用于构建个性化的内容推荐系统,提升用户体验。
4. 典型生态项目
4.1 LangChain
LangChain 是一个用于构建语言模型应用的开源框架,与 RAG-GPT 结合使用,可以进一步提升语言模型的能力。
4.2 OpenAI GPT-4
OpenAI 的 GPT-4 模型是 RAG-GPT 的核心支持模型之一,提供了强大的自然语言处理能力。
4.3 ZhipuAI
ZhipuAI 是另一个支持的 LLM 平台,提供了多种语言模型,适用于不同的应用场景。
通过以上步骤,你可以快速启动并使用 RAG-GPT 项目,构建自己的智能应用。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58