RAG-GPT 开源项目教程
2024-09-25 09:09:36作者:董灵辛Dennis
1. 项目介绍
RAG-GPT 是一个利用大型语言模型(LLM)和检索增强生成(RAG)技术构建的开源项目。它能够从用户自定义的知识库中学习,并提供与上下文相关的答案,适用于广泛的查询需求。RAG-GPT 确保了快速且准确的信息检索,适用于构建智能客服系统。
2. 项目快速启动
2.1 下载项目代码
首先,克隆 RAG-GPT 的代码库到本地:
git clone https://github.com/gpt-open/rag-gpt.git
cd rag-gpt
2.2 配置环境变量
在启动 RAG-GPT 服务之前,需要配置相关的环境变量。以下是使用 OpenAI 作为 LLM 基础的配置示例:
cp env_of_openai .env
编辑 .env 文件,配置以下变量:
LLM_NAME="OpenAI"
OPENAI_API_KEY="your_openai_api_key"
GPT_MODEL_NAME="gpt-4-turbo"
MIN_RELEVANCE_SCORE=0.4
BOT_TOPIC="YourBotName"
URL_PREFIX="http://127.0.0.1:7000/"
USE_PREPROCESS_QUERY=1
USE_RERANKING=1
USE_DEBUG=0
USE_LLAMA_PARSE=0
LLAMA_CLOUD_API_KEY="your_llama_cloud_api_key"
USE_GPT4O=0
2.3 部署 RAG-GPT
2.3.1 使用 Docker 部署
如果你已经安装了 Docker,可以使用以下命令快速部署 RAG-GPT:
docker-compose up -d
2.3.2 从源代码部署
如果你更喜欢从源代码部署,可以按照以下步骤操作:
-
设置 Python 运行环境:
python3 -m venv venv source venv/bin/activate -
安装依赖:
pip install -r requirements.txt -
创建 SQLite 数据库:
python create_sqlite_db.py -
启动服务:
./start.sh
3. 应用案例和最佳实践
3.1 智能客服系统
RAG-GPT 可以用于构建智能客服系统,通过学习企业的知识库,自动回答客户的问题,提高客服效率。
3.2 知识问答系统
在教育、医疗等领域,RAG-GPT 可以用于构建知识问答系统,帮助用户快速获取专业知识。
3.3 内容推荐系统
结合用户的历史查询和偏好,RAG-GPT 可以用于构建个性化的内容推荐系统,提升用户体验。
4. 典型生态项目
4.1 LangChain
LangChain 是一个用于构建语言模型应用的开源框架,与 RAG-GPT 结合使用,可以进一步提升语言模型的能力。
4.2 OpenAI GPT-4
OpenAI 的 GPT-4 模型是 RAG-GPT 的核心支持模型之一,提供了强大的自然语言处理能力。
4.3 ZhipuAI
ZhipuAI 是另一个支持的 LLM 平台,提供了多种语言模型,适用于不同的应用场景。
通过以上步骤,你可以快速启动并使用 RAG-GPT 项目,构建自己的智能应用。
登录后查看全文
热门项目推荐
Hunyuan3D-Part腾讯混元3D-Part00
Hunyuan3D-Omni腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00
GitCode-文心大模型-智源研究院AI应用开发大赛GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0277
community本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011
Hunyuan3D-2Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
22
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
941
555
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
510
44
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.32 K
React Native鸿蒙化仓库
C++
194
279