vs-toolsets: 无缝集成外部编译器工具链至Visual Studio
项目介绍
vs-toolsets 是一个集合脚本和实用程序的仓库,专为支持在 Microsoft Visual Studio 2013 及更高版本中与外部编译器和链接器工具链集成而设计。它通过将这些工具集添加为新的解决方案平台,使开发者能够轻松地将其应用于现有解决方案中。项目特性包括无缝集成 Clang、Emscripten 等外部工具链,自适应调整项目属性对话框以显示特定于每个工具链的参数。
项目快速启动
安装步骤
确保您已安装了适合版本的 Visual Studio。然后,进行以下操作来设置 vs-toolsets:
-
克隆仓库:
git clone https://github.com/crosire/vs-toolsets.git
-
复制文件夹: 根据您的 Visual Studio 版本,将
vs-toolsets
仓库中的所有文件夹复制到对应的目录:- 对于 Visual Studio 2017:
%PROGRAMFILES(X86)%\Microsoft Visual Studio\2017\Community\Common7\IDE\VC\VCTargets
- Visual Studio 2019:
%PROGRAMFILES(X86)%\Microsoft Visual Studio\2019\Community\MSBuild\Microsoft\VC\v160
- Visual Studio 2022:
%PROGRAMFILES%\Microsoft Visual Studio\2022\Community\MSBuild\Microsoft\VC\v160
- 对于 Visual Studio 2017:
完成以上步骤后,重启 Visual Studio 即可看到新增的工具集选项。
示例代码集成
假设您想要使用新添加的工具链编译一个简单的C++项目。首先,在 Visual Studio 中创建或打开一个项目,然后在项目属性中选择您刚集成的外部工具链作为“平台工具集”。例如,若选用了Clang工具集,编译和构建过程将自动采用该工具集的配置。
应用案例和最佳实践
在开发跨平台应用时,利用 vs-toolsets 可以高效地切换到如 Clang 的编译器,从而确保代码在不同环境下的兼容性。最佳实践包括在项目初期设置好所需的所有工具链,并通过持续集成(CI)系统验证项目在各工具链下的编译成功率,保证代码质量的一致性。
典型生态项目
vs-toolsets 直接服务于那些依赖于Visual Studio但又需利用其他编译技术(如LLVM用于性能优化、Emscripten用于Web端编译)的项目。比如,游戏开发领域经常使用此工具集来结合Visual Studio的强大调试功能和LLVM的性能优势,或者将C++代码编译成JavaScript以运行在网页上,实现跨平台发布。
这个简明的教程应该为您提供了一个清晰的起点,通过 vs-toolsets 成功集成并利用外部工具链,使得Visual Studio的使用更加灵活多变,满足多样化的开发需求。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0109AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









