使用CVAT API获取带标注的帧数据
2025-05-16 18:56:45作者:蔡丛锟
CVAT(Computer Vision Annotation Tool)是一个开源的计算机视觉标注工具,提供了丰富的API接口用于自动化操作。本文将详细介绍如何通过CVAT API获取带有标注信息的帧数据。
获取标注数据的基本方法
CVAT提供了多种方式来获取标注数据:
-
直接获取解析后的标注对象:通过
task.get_annotations()方法可以直接获取解析好的标注对象,包含形状、标签等信息。 -
获取原始JSON格式数据:使用
task.api.retrieve_annotations()方法可以获取原始的JSON格式标注数据,适合需要完全控制数据处理流程的场景。 -
导出完整数据集:CVAT支持将任务或作业导出为多种格式的数据集,包含图像和标注信息。
代码实现示例
以下是一个完整的Python示例,展示如何通过CVAT API获取带标注的帧数据:
import json
import sys
from argparse import ArgumentParser
from typing import List, Optional
from cvat_sdk import make_client
def main():
# 初始化CVAT客户端
with make_client("https://your-cvat-instance.com") as client:
client.config.status_check_period = 2
# 获取指定任务
task = client.tasks.retrieve(task_id)
# 方法1:获取解析后的标注对象
annotations = task.get_annotations()
print("第一个形状标注:", annotations.shapes[0].to_dict())
# 方法2:获取原始JSON格式数据
(_, response) = task.api.retrieve_annotations(task.id, _parse_response=False)
raw_annotations = json.loads(response.data)
print("原始标注数据:", raw_annotations)
# 方法3:导出完整数据集
task.export_dataset(
format_name="CVAT for images 1.1",
filename=f"task-{task.id}-export.zip",
include_images=True
)
if __name__ == "__main__":
main()
处理作业(Job)级别的标注
对于作业级别的标注获取,方法与任务级别类似,只需将client.tasks替换为client.jobs:
job = client.jobs.retrieve(job_id)
annotations = job.get_annotations()
高级应用:筛选有标注的帧
在实际应用中,我们可能需要只处理包含标注的帧。以下代码展示了如何筛选出有标注的帧:
# 获取所有标注
annotations = task.get_annotations()
# 收集有标注的帧号
frames_with_annotations = set()
# 处理标签类型的标注
for tag in annotations.tags:
frames_with_annotations.add(tag.frame)
# 处理形状类型的标注
for shape in annotations.shapes:
frames_with_annotations.add(shape.frame)
print("包含标注的帧:", sorted(frames_with_annotations))
注意事项
- 使用API前需要确保有正确的认证信息
- 对于大型数据集,建议使用分页或异步方式获取数据
- 不同版本的CVAT可能在API细节上有所差异
- 导出数据集时,选择合适的格式以满足下游处理需求
通过上述方法,开发者可以灵活地从CVAT中获取所需的标注数据,为后续的计算机视觉模型训练或分析提供支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 Jetson TX2开发板官方资源完全指南:从入门到精通 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1