使用CVAT API获取带标注的帧数据
2025-05-16 14:33:13作者:蔡丛锟
CVAT(Computer Vision Annotation Tool)是一个开源的计算机视觉标注工具,提供了丰富的API接口用于自动化操作。本文将详细介绍如何通过CVAT API获取带有标注信息的帧数据。
获取标注数据的基本方法
CVAT提供了多种方式来获取标注数据:
-
直接获取解析后的标注对象:通过
task.get_annotations()
方法可以直接获取解析好的标注对象,包含形状、标签等信息。 -
获取原始JSON格式数据:使用
task.api.retrieve_annotations()
方法可以获取原始的JSON格式标注数据,适合需要完全控制数据处理流程的场景。 -
导出完整数据集:CVAT支持将任务或作业导出为多种格式的数据集,包含图像和标注信息。
代码实现示例
以下是一个完整的Python示例,展示如何通过CVAT API获取带标注的帧数据:
import json
import sys
from argparse import ArgumentParser
from typing import List, Optional
from cvat_sdk import make_client
def main():
# 初始化CVAT客户端
with make_client("https://your-cvat-instance.com") as client:
client.config.status_check_period = 2
# 获取指定任务
task = client.tasks.retrieve(task_id)
# 方法1:获取解析后的标注对象
annotations = task.get_annotations()
print("第一个形状标注:", annotations.shapes[0].to_dict())
# 方法2:获取原始JSON格式数据
(_, response) = task.api.retrieve_annotations(task.id, _parse_response=False)
raw_annotations = json.loads(response.data)
print("原始标注数据:", raw_annotations)
# 方法3:导出完整数据集
task.export_dataset(
format_name="CVAT for images 1.1",
filename=f"task-{task.id}-export.zip",
include_images=True
)
if __name__ == "__main__":
main()
处理作业(Job)级别的标注
对于作业级别的标注获取,方法与任务级别类似,只需将client.tasks
替换为client.jobs
:
job = client.jobs.retrieve(job_id)
annotations = job.get_annotations()
高级应用:筛选有标注的帧
在实际应用中,我们可能需要只处理包含标注的帧。以下代码展示了如何筛选出有标注的帧:
# 获取所有标注
annotations = task.get_annotations()
# 收集有标注的帧号
frames_with_annotations = set()
# 处理标签类型的标注
for tag in annotations.tags:
frames_with_annotations.add(tag.frame)
# 处理形状类型的标注
for shape in annotations.shapes:
frames_with_annotations.add(shape.frame)
print("包含标注的帧:", sorted(frames_with_annotations))
注意事项
- 使用API前需要确保有正确的认证信息
- 对于大型数据集,建议使用分页或异步方式获取数据
- 不同版本的CVAT可能在API细节上有所差异
- 导出数据集时,选择合适的格式以满足下游处理需求
通过上述方法,开发者可以灵活地从CVAT中获取所需的标注数据,为后续的计算机视觉模型训练或分析提供支持。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K