SwarmUI项目中YOLOv9人脸模型与PyTorch 2.6兼容性问题分析
问题背景
在SwarmUI项目中,用户报告了一个关于YOLOv9人脸模型在PyTorch 2.6环境下无法正常工作的问题。该问题表现为当尝试加载face_yolov9c.pt模型文件时,系统会抛出与torch.load函数相关的错误。
技术原因分析
这个问题的根源在于PyTorch 2.6版本中引入的一个重要变更:torch.load函数的weights_only参数默认值从False改为了True。这一变更旨在提高安全性,防止潜在的任意代码执行风险。
当weights_only=True时,PyTorch会限制只加载包含张量数据的文件,而拒绝加载可能包含可执行代码的pickle对象。然而,许多YOLO模型文件(包括YOLOv9)使用了pickle序列化格式存储模型参数和架构信息,这就导致了兼容性问题。
解决方案探讨
针对这个问题,社区提出了几种可能的解决方案:
-
降级PyTorch版本:回退到PyTorch 2.5.1或更早版本可以暂时解决问题,因为旧版本默认允许加载pickle对象。但这只是一个临时解决方案,不推荐长期使用。
-
修改模型加载方式:在代码中显式设置weights_only=False可以强制允许加载pickle对象。但需要注意,这可能会带来安全风险,只应在完全信任模型来源的情况下使用。
-
模型格式转换:尝试将模型转换为其他格式(如safetensors)理论上可行,但实际测试表明Ultralytics框架目前不支持直接加载safetensors格式的YOLO模型。
最佳实践建议
经过SwarmUI开发团队的调查和修复,该问题已通过更新Ultralytics库得到解决。对于遇到类似问题的用户,我们建议:
- 确保使用最新版本的SwarmUI和相关依赖库
- 如果必须手动处理,可以考虑在加载模型时明确指定weights_only参数
- 长期来看,建议模型开发者考虑迁移到更安全的模型序列化格式
安全注意事项
在处理模型文件时,特别是当需要设置weights_only=False时,务必确保模型文件来源可信。加载不受信任的模型文件可能导致任意代码执行,带来严重的安全风险。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00