YOLOv9训练中指标全零问题的分析与解决
问题背景
在使用YOLOv9进行人脸检测训练时,用户遇到了一个典型问题:在修改模型配置文件中的类别数(nc)参数后,训练过程中的各项评估指标(包括精确率P、召回率R、mAP50和mAP50-95)全部显示为零值。这个问题不仅出现在修改nc参数后,甚至在将参数改回原始值后问题依然存在。
问题分析
配置文件修改的影响
YOLOv9的模型配置文件(如yolov9-c.yaml)中,nc参数定义了模型需要检测的类别数量。在COCO数据集上,原始设置为80类。当用户将其修改为1(针对单一人脸检测任务)后,出现了指标全零的问题。
根本原因
经过深入分析,发现问题根源在于utils/general.py文件中的一处代码逻辑。在903行附近,预测结果的索引方式被修改为prediction[0][0],这种修改导致在单类别检测时无法正确解析预测结果,进而导致评估指标计算异常。
解决方案
针对这一问题,技术社区提出了有效的解决方案:
-
临时修复方案:在训练阶段,将general.py文件中的prediction[0][0]改回prediction[0],这样可以保证训练和验证过程中指标计算正常。
-
验证阶段调整:当需要使用val.py进行验证时,再将索引方式改回prediction[0][0],确保验证流程的正确性。
技术建议
-
参数修改注意事项:在修改模型配置文件时,特别是nc这类关键参数时,建议同时检查相关的数据处理和评估代码,确保各环节兼容。
-
版本控制:对于重要的代码修改,建议使用版本控制工具记录变更,便于问题排查和回滚。
-
测试验证:任何配置修改后,都应进行小规模测试验证,确认各项功能正常后再进行完整训练。
总结
YOLOv9作为先进的目标检测框架,在实际应用中可能会遇到各种配置相关的问题。理解模型参数与代码逻辑的关联性,掌握基本的调试方法,对于成功应用这类深度学习模型至关重要。本文描述的问题和解决方案,为使用YOLOv9进行自定义目标检测任务的开发者提供了有价值的参考。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00