PEFT项目中多适配器训练的技术探讨
多适配器训练的基本概念
在PEFT(Parameter-Efficient Fine-Tuning)项目中,多适配器训练是指在一个基础模型上同时加载和使用多个适配器(Adapter)的技术。这种技术允许模型在不同的任务或领域之间灵活切换,而无需为每个任务维护单独的模型副本。
单适配器更新的技术实现
在实际应用中,开发者可能会遇到只需要更新其中一个适配器而保持其他适配器不变的需求。这可以通过以下技术手段实现:
-
梯度控制:通过设置
requires_grad=False来冻结不需要更新的适配器参数,确保在反向传播过程中这些参数不会被修改。 -
适配器激活机制:PEFT框架提供了适配器激活机制,可以控制哪些适配器在当前前向传播过程中处于活动状态。
混合批次前向传播解析
PEFT项目中实现的_mixed_batch_forward方法虽然主要用于推理场景下的混合批次处理,但其技术原理值得深入理解:
-
批次分割:方法首先根据不同的适配器名称将输入批次分割为多个子批次。
-
并行处理:对每个子批次应用对应的适配器计算,然后将结果合并回原始输出张量。
-
类型转换:处理过程中注意保持数据类型的一致性,避免精度损失。
训练场景下的注意事项
在多适配器训练场景下,特别是当只需要更新部分适配器时,开发者需要注意:
-
参数冻结时机:需要在训练循环开始前正确设置各适配器的可训练状态。
-
梯度累积影响:当使用梯度累积技术时,要确保冻结的适配器不会意外接收梯度更新。
-
内存优化:同时加载多个适配器会增加内存消耗,需要合理规划模型规模。
最佳实践建议
-
明确训练目标:在开始训练前,明确哪些适配器需要更新,哪些需要保持冻结。
-
验证机制:实现检查机制,确保只有目标适配器的参数在训练过程中发生变化。
-
性能监控:密切关注训练过程中的内存使用情况和计算效率,必要时进行调整。
通过理解这些技术细节,开发者可以更灵活地运用PEFT框架的多适配器功能,实现更复杂的模型微调策略。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00