PEFT项目中混合使用Prompt Tuning与LoRA的技术探索
2025-05-12 06:38:21作者:滑思眉Philip
在大型语言模型(LLM)的微调领域,参数高效微调(PEFT)技术因其显著降低计算资源需求而备受关注。本文将深入探讨在PEFT框架下结合Prompt Tuning和LoRA两种微调方法的创新实践。
技术背景
Prompt Tuning是一种通过在输入前添加可学习的"虚拟令牌"来引导模型行为的轻量级微调方法。而LoRA(Low-Rank Adaptation)则通过低秩矩阵分解来间接调整模型权重。这两种方法各有优势:Prompt Tuning特别适合任务特定的提示优化,LoRA则能更全面地调整模型行为。
混合微调的需求场景
在实际应用中,特别是资源受限的环境下,开发者常常需要同时优化任务提示和模型权重。例如在信息检索任务中,既需要优化任务描述提示(TASK_PROMPT),又需要调整模型本身以适应特定查询模式。传统做法是分阶段优化,但这可能导致次优结果。
技术实现方案
通过PEFT框架,我们可以创造性地组合这两种方法:
- 基础模型准备:首先加载预训练语言模型作为基础
- LoRA适配:应用LoRA配置对基础模型进行第一次包装
- Prompt Tuning叠加:在LoRA适配后的基础模型上再应用Prompt Tuning
- 参数激活调整:由于Prompt Tuning会冻结所有参数,需要特别重新激活LoRA参数
这种组合方式既保留了Prompt Tuning对任务提示的优化能力,又通过LoRA实现了对模型权重的精细调整。
实现细节与注意事项
在实际实现时,开发者需要注意几个关键点:
- 模型嵌套问题:避免创建多层PeftModel包装,这会影响模型的可管理性
- 参数冻结机制:理解PEFT中不同适配器的参数冻结逻辑
- 保存与加载:混合适配器的模型需要特殊的序列化处理方式
- 训练稳定性:两种适配器同时训练可能需要调整学习率等超参数
潜在应用价值
这种混合方法特别适合以下场景:
- 需要同时优化任务指令和模型行为的应用
- 资源受限环境下对大型模型的精细调整
- 需要快速迭代不同提示策略的实验性项目
- 多任务学习场景下的参数高效共享
技术展望
虽然这种混合方法展现了良好的潜力,但仍有许多值得探索的方向:
- 不同适配器组合的性能比较
- 训练动态的稳定性研究
- 更高效的模型保存与加载方案
- 自动化的适配器组合策略
通过这种创新性的技术组合,PEFT框架为资源受限环境下的模型微调提供了更多可能性,值得开发者和研究者进一步探索和实践。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882