PEFT项目中混合使用Prompt Tuning与LoRA的技术探索
2025-05-12 14:14:14作者:滑思眉Philip
在大型语言模型(LLM)的微调领域,参数高效微调(PEFT)技术因其显著降低计算资源需求而备受关注。本文将深入探讨在PEFT框架下结合Prompt Tuning和LoRA两种微调方法的创新实践。
技术背景
Prompt Tuning是一种通过在输入前添加可学习的"虚拟令牌"来引导模型行为的轻量级微调方法。而LoRA(Low-Rank Adaptation)则通过低秩矩阵分解来间接调整模型权重。这两种方法各有优势:Prompt Tuning特别适合任务特定的提示优化,LoRA则能更全面地调整模型行为。
混合微调的需求场景
在实际应用中,特别是资源受限的环境下,开发者常常需要同时优化任务提示和模型权重。例如在信息检索任务中,既需要优化任务描述提示(TASK_PROMPT),又需要调整模型本身以适应特定查询模式。传统做法是分阶段优化,但这可能导致次优结果。
技术实现方案
通过PEFT框架,我们可以创造性地组合这两种方法:
- 基础模型准备:首先加载预训练语言模型作为基础
- LoRA适配:应用LoRA配置对基础模型进行第一次包装
- Prompt Tuning叠加:在LoRA适配后的基础模型上再应用Prompt Tuning
- 参数激活调整:由于Prompt Tuning会冻结所有参数,需要特别重新激活LoRA参数
这种组合方式既保留了Prompt Tuning对任务提示的优化能力,又通过LoRA实现了对模型权重的精细调整。
实现细节与注意事项
在实际实现时,开发者需要注意几个关键点:
- 模型嵌套问题:避免创建多层PeftModel包装,这会影响模型的可管理性
- 参数冻结机制:理解PEFT中不同适配器的参数冻结逻辑
- 保存与加载:混合适配器的模型需要特殊的序列化处理方式
- 训练稳定性:两种适配器同时训练可能需要调整学习率等超参数
潜在应用价值
这种混合方法特别适合以下场景:
- 需要同时优化任务指令和模型行为的应用
- 资源受限环境下对大型模型的精细调整
- 需要快速迭代不同提示策略的实验性项目
- 多任务学习场景下的参数高效共享
技术展望
虽然这种混合方法展现了良好的潜力,但仍有许多值得探索的方向:
- 不同适配器组合的性能比较
- 训练动态的稳定性研究
- 更高效的模型保存与加载方案
- 自动化的适配器组合策略
通过这种创新性的技术组合,PEFT框架为资源受限环境下的模型微调提供了更多可能性,值得开发者和研究者进一步探索和实践。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250