PyEPO:基于PyTorch的端到端预测优化工具
2024-09-20 09:59:50作者:贡沫苏Truman
项目介绍
PyEPO(PyTorch-based End-to-End Predict-then-Optimize Tool)是一个基于Python的开源软件,专门用于建模和解决具有线性目标函数的预测优化问题。该项目通过将优化模型嵌入到人工神经网络中,实现了端到端的训练过程。PyEPO的核心功能包括使用GurobiPy、Pyomo或其他求解器和算法构建优化模型,并将其集成到PyTorch的自动微分模块中。
项目技术分析
PyEPO的技术架构基于PyTorch,充分利用了PyTorch的自动微分功能,使得优化模型的训练过程更加高效和灵活。项目支持多种优化方法,如SPO+、DBB、NID、DPO、PFYL、NCE、LTR、I-MLE和AI-MLE等。此外,PyEPO还支持Gurobi、COPT和Pyomo等API,以及并行计算和解决方案缓存,极大地提升了训练速度和决策质量。
项目及技术应用场景
PyEPO适用于需要预测和优化相结合的多种应用场景,包括但不限于:
- 资源分配问题:如物流、供应链管理中的资源分配。
- 能源调度:如电力系统的实时调度。
- 路径规划:如游戏中的最短路径问题。
- 金融投资组合优化:如资产配置和风险管理。
项目特点
- 端到端训练:将优化模型无缝集成到神经网络中,实现端到端的训练。
- 多种优化方法:支持多种先进的优化方法,满足不同应用需求。
- 高效求解器支持:兼容Gurobi、COPT和Pyomo等高效求解器。
- 并行计算:支持并行计算,加速优化求解过程。
- 解决方案缓存:通过解决方案缓存技术,提升训练效率。
- kNN鲁棒损失:支持kNN鲁棒损失,提高决策质量。
安装与使用
PyEPO可以通过多种方式安装,包括从GitHub克隆、使用pip安装或通过conda安装。以下是安装命令示例:
# 从GitHub克隆并安装
git clone -b main --depth 1 https://github.com/khalil-research/PyEPO.git
pip install PyEPO/pkg/.
# 使用pip安装
pip install pyepo
# 使用conda安装
conda install -c pyepo pyepo
示例代码
以下是一个简单的示例代码,展示了如何使用PyEPO进行预测优化模型的训练:
import gurobipy as gp
from gurobipy import GRB
import numpy as np
import pyepo
from pyepo.model.grb import optGrbModel
import torch
from torch import nn
from torch.utils.data import DataLoader
# 优化模型
class myModel(optGrbModel):
def __init__(self, weights):
self.weights = np.array(weights)
self.num_item = len(weights[0])
super().__init__()
def _getModel(self):
m = gp.Model()
x = m.addVars(self.num_item, name="x", vtype=GRB.BINARY)
m.modelSense = GRB.MAXIMIZE
m.addConstr(gp.quicksum([self.weights[0,i] * x[i] for i in range(self.num_item)]) <= 7)
m.addConstr(gp.quicksum([self.weights[1,i] * x[i] for i in range(self.num_item)]) <= 8)
m.addConstr(gp.quicksum([self.weights[2,i] * x[i] for i in range(self.num_item)]) <= 9)
return m, x
# 预测模型
class LinearRegression(nn.Module):
def __init__(self):
super(LinearRegression, self).__init__()
self.linear = nn.Linear(num_feat, num_item)
def forward(self, x):
out = self.linear(x)
return out
if __name__ == "__main__":
num_data = 1000
num_feat = 5
num_item = 10
weights, x, c = pyepo.data.knapsack.genData(num_data, num_feat, num_item, dim=3, deg=4, noise_width=0.5, seed=135)
optmodel = myModel(weights)
predmodel = LinearRegression()
optimizer = torch.optim.Adam(predmodel.parameters(), lr=1e-2)
spop = pyepo.func.SPOPlus(optmodel, processes=1)
dataset = pyepo.data.dataset.optDataset(optmodel, x, c)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
num_epochs = 10
for epoch in range(num_epochs):
for data in dataloader:
x, c, w, z = data
cp = predmodel(x)
loss = spop(cp, c, w, z)
optimizer.zero_grad()
loss.backward()
optimizer.step()
regret = pyepo.metric.regret(predmodel, optmodel, dataloader)
print("Regret on Training Set: {:.4f}".format(regret))
总结
PyEPO作为一个强大的预测优化工具,不仅提供了丰富的优化方法和高效的求解器支持,还通过端到端的训练方式,极大地简化了复杂优化问题的解决流程。无论是在学术研究还是工业应用中,PyEPO都能为用户提供强大的支持,帮助用户在各种复杂场景中实现高效的预测和优化。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218