首页
/ LMDeploy项目中的显存管理与并发请求参数解析

LMDeploy项目中的显存管理与并发请求参数解析

2025-06-03 14:35:00作者:尤辰城Agatha

在部署大型语言模型服务时,显存管理是一个关键的技术挑战。本文将以LMDeploy项目为例,深入分析其显存分配机制和并发请求参数的实际作用,帮助开发者更好地优化模型服务部署。

显存分配机制

LMDeploy在启动服务时会进行显存的多层次分配:

  1. 模型权重占用:这是最基础的显存消耗,由模型本身的参数规模和数据类型决定。例如Qwen2-VL-7B-Instruct模型在float16精度下,显存占用约为14GB左右。

  2. 运行时预留空间:系统会根据模型的词表大小和max_prefill_token_num参数预留一部分显存作为运行时开销。这部分是预估值,主要用于处理前向传播过程中的临时变量和中间结果。

  3. KV Cache分配:这是影响服务并发能力的关键部分。cache-max-entry-count参数控制了剩余显存中用于KV Cache的比例。例如设置为0.95表示将95%的剩余显存用于存储注意力机制的键值缓存。

参数误解澄清

在实际使用中,开发者常对max-concurrent-requests参数存在误解:

  • max-concurrent-requests:这个参数仅控制服务端同时处理的请求数量上限,与显存分配无直接关系。它主要影响请求队列管理和负载均衡。

  • cache-max-entry-count:这才是真正影响显存使用的关键参数。它决定了KV Cache可用的显存比例,直接影响服务能够支持的并发推理能力。

实践建议

针对显存优化,我们给出以下建议:

  1. 对于固定场景部署,可以通过cache-max-entry-count预留足够的KV Cache空间,但不宜过高(通常不超过0.95),需要为运行时操作保留缓冲。

  2. 监控服务运行时的实际显存使用情况,特别是处理第一个请求后的显存变化,这能反映运行时开销的真实需求。

  3. 对于多卡并行(如文中TP=2的情况),注意显存分配是跨卡平衡的,需要确保各卡都有足够的预留空间。

  4. 在资源紧张的环境中,可以考虑适当降低cache-max-entry-count,但会牺牲部分并发性能。

通过理解这些机制,开发者可以更精准地配置LMDeploy服务,在有限显存资源下实现最优的服务性能。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
61
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133