首页
/ 全局二次池化卷积网络:重塑深度学习的边界

全局二次池化卷积网络:重塑深度学习的边界

2024-06-19 10:33:43作者:曹令琨Iris

全局二次池化卷积网络:重塑深度学习的边界

项目简介

Global-Second-order-Pooling-Convolutional-Networks(简称GSoP Net)是Zilin Gao在CVPR2019年提出的一种创新性卷积神经网络结构。这个开源实现提供了全局二次池化的核心思想,旨在通过引入高阶表示来提升深度卷积网络的非线性建模能力。

技术分析

传统的卷积网络主要依赖于一阶特征进行图像识别,而GSoP Net则打破了这一局限,提出了全球二次池化(Global Second-order Pooling,GSoP)。GSoP块可以在网络中的任何卷积层之后插入,通过对输入张量进行协方差计算,然后通过线性卷积和非线性激活产生输出张量,用于按通道维度对输入张量进行缩放。此外,还可以沿空间维度执行GSoP以实现张量的尺度调整。这种方法充分利用了图像的整体二阶统计信息,增强了网络的非线性能力。

应用场景

  • 大规模视觉识别:GSoP Net适用于处理各类复杂的分类任务,特别是在ImageNet-1K这样的大型数据集上表现优异。
  • 其他视觉任务:由于其出色的表现在理论上也可以扩展到目标检测、语义分割等任务中,为这些问题提供更强大的特征表达。

项目特点

  1. 整体优化:GSoP Net的设计考虑了从底层到高层的全局信息,使得网络在整个过程中都能利用到二阶统计信息。
  2. 性能卓越:实验结果显示,GSoP Net在ImageNet-1K和CIFAR-100等数据集上的性能优于传统网络,并达到了当前的state-of-the-art结果。
  3. 易于集成:GSoP块可以轻松插入现有网络架构中,为现有模型提供增强功能。
  4. 代码清晰:基于PyTorch实现,代码结构简洁明了,方便研究人员理解和复用。

开始使用

为了开始您的探索之旅,您需要一个支持CUDA 9.0和PyTorch 0.4.0的Ubuntu 16.04系统。安装好必要的库后,只需运行train.sh脚本即可开始训练模型。

这是一个改变深度学习边界的强大工具,它将帮助开发者和研究者进一步挖掘深度学习的潜力。现在就加入GSoP Net的世界,开启更高层次的图像理解之旅吧!

引用

如果您在论文或项目中使用了GSoP Net,请引用以下文献:

@InProceedings{Gao_2019_CVPR,
  author    = {Gao, Zilin and Xie, Jiangtao and Wang, Qilong and Li, Peihua},
  title     = {Global Second-order Pooling Convolutional Networks},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year      = {2019}
}

对于任何建议或问题,欢迎直接留言或联系作者:gzl@mail.dlut.edu.cn。期待与您一同探索GSoP Net的无限可能!

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
263
53
国产编程语言蓝皮书国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
64
16
open-eBackupopen-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
85
63
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
195
45
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
xxl-jobxxl-job
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
Java
9
0
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
171
41
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
38
24
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
332
27