全局二次池化卷积网络:重塑深度学习的边界
2024-06-19 10:33:43作者:曹令琨Iris
全局二次池化卷积网络:重塑深度学习的边界
项目简介
Global-Second-order-Pooling-Convolutional-Networks(简称GSoP Net)是Zilin Gao在CVPR2019年提出的一种创新性卷积神经网络结构。这个开源实现提供了全局二次池化的核心思想,旨在通过引入高阶表示来提升深度卷积网络的非线性建模能力。
技术分析
传统的卷积网络主要依赖于一阶特征进行图像识别,而GSoP Net则打破了这一局限,提出了全球二次池化(Global Second-order Pooling,GSoP)。GSoP块可以在网络中的任何卷积层之后插入,通过对输入张量进行协方差计算,然后通过线性卷积和非线性激活产生输出张量,用于按通道维度对输入张量进行缩放。此外,还可以沿空间维度执行GSoP以实现张量的尺度调整。这种方法充分利用了图像的整体二阶统计信息,增强了网络的非线性能力。
应用场景
- 大规模视觉识别:GSoP Net适用于处理各类复杂的分类任务,特别是在ImageNet-1K这样的大型数据集上表现优异。
- 其他视觉任务:由于其出色的表现在理论上也可以扩展到目标检测、语义分割等任务中,为这些问题提供更强大的特征表达。
项目特点
- 整体优化:GSoP Net的设计考虑了从底层到高层的全局信息,使得网络在整个过程中都能利用到二阶统计信息。
- 性能卓越:实验结果显示,GSoP Net在ImageNet-1K和CIFAR-100等数据集上的性能优于传统网络,并达到了当前的state-of-the-art结果。
- 易于集成:GSoP块可以轻松插入现有网络架构中,为现有模型提供增强功能。
- 代码清晰:基于PyTorch实现,代码结构简洁明了,方便研究人员理解和复用。
开始使用
为了开始您的探索之旅,您需要一个支持CUDA 9.0和PyTorch 0.4.0的Ubuntu 16.04系统。安装好必要的库后,只需运行train.sh脚本即可开始训练模型。
这是一个改变深度学习边界的强大工具,它将帮助开发者和研究者进一步挖掘深度学习的潜力。现在就加入GSoP Net的世界,开启更高层次的图像理解之旅吧!
引用
如果您在论文或项目中使用了GSoP Net,请引用以下文献:
@InProceedings{Gao_2019_CVPR,
author = {Gao, Zilin and Xie, Jiangtao and Wang, Qilong and Li, Peihua},
title = {Global Second-order Pooling Convolutional Networks},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2019}
}
对于任何建议或问题,欢迎直接留言或联系作者:gzl@mail.dlut.edu.cn。期待与您一同探索GSoP Net的无限可能!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1