全局二次池化卷积网络:重塑深度学习的边界
2024-06-19 10:33:43作者:曹令琨Iris
全局二次池化卷积网络:重塑深度学习的边界
项目简介
Global-Second-order-Pooling-Convolutional-Networks(简称GSoP Net)是Zilin Gao在CVPR2019年提出的一种创新性卷积神经网络结构。这个开源实现提供了全局二次池化的核心思想,旨在通过引入高阶表示来提升深度卷积网络的非线性建模能力。
技术分析
传统的卷积网络主要依赖于一阶特征进行图像识别,而GSoP Net则打破了这一局限,提出了全球二次池化(Global Second-order Pooling,GSoP)。GSoP块可以在网络中的任何卷积层之后插入,通过对输入张量进行协方差计算,然后通过线性卷积和非线性激活产生输出张量,用于按通道维度对输入张量进行缩放。此外,还可以沿空间维度执行GSoP以实现张量的尺度调整。这种方法充分利用了图像的整体二阶统计信息,增强了网络的非线性能力。
应用场景
- 大规模视觉识别:GSoP Net适用于处理各类复杂的分类任务,特别是在ImageNet-1K这样的大型数据集上表现优异。
- 其他视觉任务:由于其出色的表现在理论上也可以扩展到目标检测、语义分割等任务中,为这些问题提供更强大的特征表达。
项目特点
- 整体优化:GSoP Net的设计考虑了从底层到高层的全局信息,使得网络在整个过程中都能利用到二阶统计信息。
- 性能卓越:实验结果显示,GSoP Net在ImageNet-1K和CIFAR-100等数据集上的性能优于传统网络,并达到了当前的state-of-the-art结果。
- 易于集成:GSoP块可以轻松插入现有网络架构中,为现有模型提供增强功能。
- 代码清晰:基于PyTorch实现,代码结构简洁明了,方便研究人员理解和复用。
开始使用
为了开始您的探索之旅,您需要一个支持CUDA 9.0和PyTorch 0.4.0的Ubuntu 16.04系统。安装好必要的库后,只需运行train.sh脚本即可开始训练模型。
这是一个改变深度学习边界的强大工具,它将帮助开发者和研究者进一步挖掘深度学习的潜力。现在就加入GSoP Net的世界,开启更高层次的图像理解之旅吧!
引用
如果您在论文或项目中使用了GSoP Net,请引用以下文献:
@InProceedings{Gao_2019_CVPR,
author = {Gao, Zilin and Xie, Jiangtao and Wang, Qilong and Li, Peihua},
title = {Global Second-order Pooling Convolutional Networks},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2019}
}
对于任何建议或问题,欢迎直接留言或联系作者:gzl@mail.dlut.edu.cn。期待与您一同探索GSoP Net的无限可能!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C068
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
458
3.42 K
暂无简介
Dart
711
170
Ascend Extension for PyTorch
Python
265
300
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
182
68
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
840
416
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
432
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
103
118