推荐开源项目:基于底部向上与顶部向下注意力的视觉问答系统
2024-09-21 10:12:58作者:龚格成
在人工智能与自然语言处理领域,视觉问答(Visual Question Answering, VQA)一直是研究的热点。今天,我们向您介绍一个高效的开源项目——《底部向上与顶部向下注意力用于视觉问答》。这个项目实现了2017年VQA挑战赛的获胜方案,并通过PyTorch框架提供了简洁而强大的实现。
项目介绍
本项目是CMU课程“高级多模态机器学习”中的一部分,由Hengyuan Hu、Alex Xiao和Henry Huang合作完成。项目灵感源于论文“底部向上与顶部向下注意力用于图像描述与视觉问答”及“2017年挑战赛的视觉问答技巧与经验”,旨在提供一个强健的VQA基线模型。它不仅实现了高精度的问答功能,更是在简化训练过程的同时保持了优越性能,验证准确率达到了惊人的63.58%,超越原始报告的最佳结果。
技术分析
该项目进行了几项关键的技术简化与创新,以适应快速迭代的需求:
- 数据与对象数量限制:未使用额外的Visual Genome数据集,并将每图对象数固定为36,显著减少了训练时间。
- 单流分类器设计:摒弃复杂的两流结构和预训练步骤,采用直接而有效的单一分类器。
- 激活函数选择:最终选用ReLU而非gated tanh或GLU,追求简化与效率间的平衡。
- 性能提升策略:通过添加dropout防止过拟合、增加神经元数量、引入权重归一化、使用Adamax优化器以及梯度裁剪等措施,有效提升了模型表现。
特别的是,项目采用了自定义的新注意力模块,借鉴自“建模指代表达中的关系”的论文,但经过修改以提高性能,这一改动成为突破点,将准确率推至新的高度。
应用场景
该模型适用于多种需求,包括但不限于教育领域的智能辅助教学,智能家居中的语音交互系统,以及商业领域的自动图像内容检索系统。它的高效性尤其适合快速响应的在线服务平台,能够即时解析并回答关于图像的问题,增强用户体验。
项目特点
- 高性能与轻量级:在简化多项复杂设置的前提下,依然达到甚至超过原论文成绩,显示出了极高的性价比。
- 易用性:对环境要求明确,通过简单的命令即可启动训练,即便是AI初学者也能迅速上手。
- 灵活的架构:尽管简化了多个组件,但仍保留足够的灵活性,便于进一步的研究与定制。
- 开源精神:通过共享源码,促进社区对于VQA技术的理解和进步,特别是对于如何优化模型以适应特定任务提供了实用范例。
综上所述,无论你是想要深入了解VQA领域的研究人员,还是寻求实际应用解决方案的开发者,这个项目都是一扇宝贵的窗口,邀您共同探索视觉与语言融合的无限可能。赶快尝试,让您的AI之旅迈出坚实一步。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134