MLRun v1.8.0-rc49版本发布:模型监控与系统优化深度解析
MLRun是一个开源的机器学习运维(MLOps)平台,旨在简化和自动化机器学习工作流程的部署、管理和监控。作为数据科学家和机器学习工程师的强大工具,MLRun提供了从数据准备到模型部署的全生命周期管理能力。
核心功能改进
本次发布的v1.8.0-rc49版本在模型监控和系统稳定性方面做出了多项重要改进。模型监控功能是MLRun的关键组件之一,它能够实时跟踪生产环境中部署的模型性能,确保模型在实际应用中的表现符合预期。
在模型监控流程中,开发团队移除了特征向量保存的功能,这一优化简化了监控流程,减少了不必要的存储开销。同时,团队修复了应用工件数据集中端点UID添加的问题,确保了监控数据的完整性和准确性。
性能与稳定性提升
数据库处理方面,新版本增强了对时间戳的处理能力,现在能够正确处理不带毫秒部分的时间戳数据。这一改进对于需要精确时间记录的场景尤为重要,特别是在处理高频监控数据时。
针对时序数据库TDEngine的支持也得到了加强,新增了对微秒级精度的支持。这一特性使得MLRun能够满足更高精度的时间序列数据监控需求,为金融交易、实时推荐等对时间敏感的应用场景提供了更好的支持。
测试与质量保证
开发团队在本版本中投入了大量精力进行系统测试和质量保证工作。修复了特征集测试中的特征别名问题,确保了数据转换和特征工程的正确性。同时,针对模型监控的系统测试进行了全面修复,提高了整个监控系统的可靠性。
在服务层,修复了使用set_flow时图形步骤名称的问题,这一改进使得工作流定义更加清晰,有助于开发人员更好地理解和维护复杂的机器学习流水线。
开发环境与依赖管理
为了保持开发环境的稳定性,本次发布移除了Python 3.12的CI测试任务,并限制了vizro版本以避免因pydantic升级带来的兼容性问题。这些调整确保了开发和生产环境的一致性,减少了因环境差异导致的问题。
依赖管理方面,storey库的版本得到了更新,这一底层组件的升级为MLRun带来了性能改进和新功能支持。
教程与用户体验
考虑到实际应用场景中的时间需求,团队增加了批处理推理教程中的等待时间或指标阈值。这一调整使得教程更加贴近真实生产环境,帮助用户更好地理解和应用批处理推理技术。
总结
MLRun v1.8.0-rc49版本通过多项功能改进和问题修复,进一步提升了平台的稳定性和可用性。特别是在模型监控领域,新版本提供了更精确、更可靠的功能支持,为生产环境中的机器学习模型运维提供了坚实保障。这些改进使得MLRun继续保持在MLOps领域的领先地位,为数据科学团队提供了更加强大的工具支持。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









