TensorflowASR 开源项目使用教程
1. 项目介绍
TensorflowASR 是一个基于 TensorFlow 2 的端到端语音识别项目,旨在让 CPU 上的模型性能逼近 GPU 上的模型性能。该项目实现了多种自动语音识别架构,如 Conformer、CTC 等,并且支持流式识别和离线识别。CPU 上的实时率(RTF)小于 0.1,适用于多种应用场景。
2. 项目快速启动
2.1 环境准备
确保你已经安装了 Python 3.6+ 和 TensorFlow 2.8+。你可以使用以下命令安装 TensorFlow:
pip install tensorflow-gpu
2.2 克隆项目
使用 Git 克隆项目到本地:
git clone https://github.com/Z-yq/TensorflowASR.git
cd TensorflowASR
2.3 安装依赖
安装项目所需的依赖包:
pip install -r requirements.txt
2.4 训练模型
准备训练数据,并修改配置文件 am_data.yml 和模型配置文件(如 ConformerS.yml)。然后执行以下命令开始训练:
python train_asr.py --data_config /asr/configs/am_data.yml --model_config /asr/configs/ConformerS.yml
2.5 测试模型
训练完成后,可以使用以下命令进行测试:
python test_asr.py
3. 应用案例和最佳实践
3.1 离线语音识别
在离线场景中,TensorflowASR 可以用于将音频文件转换为文本。通过训练好的模型,可以高效地将大量音频数据转换为文本数据,适用于语音转写、语音搜索等应用。
3.2 流式语音识别
在实时语音识别场景中,TensorflowASR 支持流式识别,适用于实时语音输入、语音助手等应用。通过优化模型结构和推理速度,可以在 CPU 上实现低延迟的实时语音识别。
3.3 标点恢复
TensorflowASR 还支持标点恢复功能,可以在语音识别的基础上,自动为文本添加标点符号,提升文本的可读性。
4. 典型生态项目
4.1 TensorflowTTS
TensorflowTTS 是一个基于 TensorFlow 2 的文本到语音合成项目,可以与 TensorflowASR 结合使用,实现从文本到语音的端到端解决方案。
4.2 NLU 和 BOT
结合自然语言理解(NLU)和聊天机器人(BOT)项目,TensorflowASR 可以用于语音输入的解析和处理,实现语音交互的智能助手。
4.3 TTS 数据增强系统
TensorflowASR 提供了 TTS 数据增强系统,可以在没有大量语音数据的情况下,通过合成语音数据来提升 ASR 模型的性能。
通过以上模块的介绍和实践,你可以快速上手 TensorflowASR 项目,并将其应用于各种语音识别场景中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00