TensorflowASR 开源项目使用教程
1. 项目介绍
TensorflowASR 是一个基于 TensorFlow 2 的端到端语音识别项目,旨在让 CPU 上的模型性能逼近 GPU 上的模型性能。该项目实现了多种自动语音识别架构,如 Conformer、CTC 等,并且支持流式识别和离线识别。CPU 上的实时率(RTF)小于 0.1,适用于多种应用场景。
2. 项目快速启动
2.1 环境准备
确保你已经安装了 Python 3.6+ 和 TensorFlow 2.8+。你可以使用以下命令安装 TensorFlow:
pip install tensorflow-gpu
2.2 克隆项目
使用 Git 克隆项目到本地:
git clone https://github.com/Z-yq/TensorflowASR.git
cd TensorflowASR
2.3 安装依赖
安装项目所需的依赖包:
pip install -r requirements.txt
2.4 训练模型
准备训练数据,并修改配置文件 am_data.yml 和模型配置文件(如 ConformerS.yml)。然后执行以下命令开始训练:
python train_asr.py --data_config /asr/configs/am_data.yml --model_config /asr/configs/ConformerS.yml
2.5 测试模型
训练完成后,可以使用以下命令进行测试:
python test_asr.py
3. 应用案例和最佳实践
3.1 离线语音识别
在离线场景中,TensorflowASR 可以用于将音频文件转换为文本。通过训练好的模型,可以高效地将大量音频数据转换为文本数据,适用于语音转写、语音搜索等应用。
3.2 流式语音识别
在实时语音识别场景中,TensorflowASR 支持流式识别,适用于实时语音输入、语音助手等应用。通过优化模型结构和推理速度,可以在 CPU 上实现低延迟的实时语音识别。
3.3 标点恢复
TensorflowASR 还支持标点恢复功能,可以在语音识别的基础上,自动为文本添加标点符号,提升文本的可读性。
4. 典型生态项目
4.1 TensorflowTTS
TensorflowTTS 是一个基于 TensorFlow 2 的文本到语音合成项目,可以与 TensorflowASR 结合使用,实现从文本到语音的端到端解决方案。
4.2 NLU 和 BOT
结合自然语言理解(NLU)和聊天机器人(BOT)项目,TensorflowASR 可以用于语音输入的解析和处理,实现语音交互的智能助手。
4.3 TTS 数据增强系统
TensorflowASR 提供了 TTS 数据增强系统,可以在没有大量语音数据的情况下,通过合成语音数据来提升 ASR 模型的性能。
通过以上模块的介绍和实践,你可以快速上手 TensorflowASR 项目,并将其应用于各种语音识别场景中。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00