TensorFlowASR使用手册
2024-09-27 08:48:38作者:牧宁李
项目概述
TensorFlowASR 是一个致力于提升CPU上自动语音识别(ASR)模型性能的项目,其目标是使CPU端的模型接近GPU的性能表现。该项目特别强调在CPU上实现低实时率(Real-Time Factor, RTF),通常小于0.1。它基于TensorFlow 2.x,提供了包括Conformer在内的多种架构,并专注于实时在线和离线语音识别。
项目目录结构及介绍
下面是TensorFlowASR的基本目录结构及其重要组件说明:
TensorflowASR/
|-- Inference # 推理相关代码和配置
|-- augmentations # 数据增强模块
|-- externals # 外部依赖或工具
|-- leaf_audio # 音频处理相关模块
|-- punc_recover # 标点恢复相关的代码
|-- utils # 辅助函数集合
|-- vad # 语音活动检测(VAD)相关实现
|-- ... (更多核心模块)
|-- .gitignore # Git忽略文件配置
|-- LICENSE # 开源许可证文件
|-- README.md # 项目介绍与快速入门指南
|-- community.jpg # 社区相关图片
|-- eval_*.py # 评估脚本
|-- test_*.py # 单元测试脚本
|-- train_*.py # 训练脚本
|-- am_data.yml # 音素数据配置文件
|-- config_model/*.yml # 模型配置文件
项目启动文件介绍
-
主要入口:项目的核心运行脚本分散在不同的任务中,主要的启动脚本包括:
train_asr.py
:用于训练模型的脚本,通过配置文件指定模型和数据集。test_asr.py
:提供了一个演示如何进行测试的简单示例,可以根据需求自定义音频处理和识别过程。eval_am.py
和eval_punc.py
等:用于评估模型性能的脚本。
-
配置引导:项目运作的关键在于配置文件的正确设定,比如
am_data.yml
控制数据处理细节,而特定模型的配置如conformer.yml
定义模型结构和训练细节。
项目配置文件介绍
主要配置文件解析
-
am_data.yml
- 作用:此文件主要用于定义音频模型的数据处理参数,包括数据目录、标签映射、声学特征提取设置等。
-
模型配置文件(如
conformer.yml
)- 详解:这些文件详细描述了模型架构的选择(如Conformer)、超参数(学习率、批次大小等)、优化器类型和损失函数等。它们允许用户根据需要调整模型的复杂度和训练策略。
-
其他配置:还包括VAD和标点恢复等组件的配置文件,分别用于设置相应的训练和处理流程。
配置文件使用示例
-
训练模型:启动训练过程前,首先编辑
am_data.yml
指定数据路径和预处理偏好。然后,运行python train_asr.py --data_config am_data.yml --model_config conformer.yml
来开始训练Conformer模型。 -
转换为ONNX:对于部署目的,可能需要将模型转换为ONNX格式。虽然具体的脚本未直接提及,一般涉及调用类似
tf2onnx
的工具,这通常在项目中或其文档中会有指导。
请注意,实际操作前务必查阅最新的README.md,因为它包含了最新指令、依赖安装和任何潜在的变更。此外,具体配置文件的字段和可用选项可能会随项目更新而变化,因此建议始终对照最新的文档进行配置。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析4 freeCodeCamp博客页面工作坊中的断言方法优化建议5 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp音乐播放器项目中的函数调用问题解析8 freeCodeCamp论坛排行榜项目中的错误日志规范要求9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
887
525

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
188

React Native鸿蒙化仓库
C++
182
265

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
368
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
737
105