TensorFlowASR使用手册
2024-09-27 11:02:40作者:牧宁李
项目概述
TensorFlowASR 是一个致力于提升CPU上自动语音识别(ASR)模型性能的项目,其目标是使CPU端的模型接近GPU的性能表现。该项目特别强调在CPU上实现低实时率(Real-Time Factor, RTF),通常小于0.1。它基于TensorFlow 2.x,提供了包括Conformer在内的多种架构,并专注于实时在线和离线语音识别。
项目目录结构及介绍
下面是TensorFlowASR的基本目录结构及其重要组件说明:
TensorflowASR/
|-- Inference # 推理相关代码和配置
|-- augmentations # 数据增强模块
|-- externals # 外部依赖或工具
|-- leaf_audio # 音频处理相关模块
|-- punc_recover # 标点恢复相关的代码
|-- utils # 辅助函数集合
|-- vad # 语音活动检测(VAD)相关实现
|-- ... (更多核心模块)
|-- .gitignore # Git忽略文件配置
|-- LICENSE # 开源许可证文件
|-- README.md # 项目介绍与快速入门指南
|-- community.jpg # 社区相关图片
|-- eval_*.py # 评估脚本
|-- test_*.py # 单元测试脚本
|-- train_*.py # 训练脚本
|-- am_data.yml # 音素数据配置文件
|-- config_model/*.yml # 模型配置文件
项目启动文件介绍
-
主要入口:项目的核心运行脚本分散在不同的任务中,主要的启动脚本包括:
train_asr.py:用于训练模型的脚本,通过配置文件指定模型和数据集。test_asr.py:提供了一个演示如何进行测试的简单示例,可以根据需求自定义音频处理和识别过程。eval_am.py和eval_punc.py等:用于评估模型性能的脚本。
-
配置引导:项目运作的关键在于配置文件的正确设定,比如
am_data.yml控制数据处理细节,而特定模型的配置如conformer.yml定义模型结构和训练细节。
项目配置文件介绍
主要配置文件解析
-
am_data.yml- 作用:此文件主要用于定义音频模型的数据处理参数,包括数据目录、标签映射、声学特征提取设置等。
-
模型配置文件(如
conformer.yml)- 详解:这些文件详细描述了模型架构的选择(如Conformer)、超参数(学习率、批次大小等)、优化器类型和损失函数等。它们允许用户根据需要调整模型的复杂度和训练策略。
-
其他配置:还包括VAD和标点恢复等组件的配置文件,分别用于设置相应的训练和处理流程。
配置文件使用示例
-
训练模型:启动训练过程前,首先编辑
am_data.yml指定数据路径和预处理偏好。然后,运行python train_asr.py --data_config am_data.yml --model_config conformer.yml来开始训练Conformer模型。 -
转换为ONNX:对于部署目的,可能需要将模型转换为ONNX格式。虽然具体的脚本未直接提及,一般涉及调用类似
tf2onnx的工具,这通常在项目中或其文档中会有指导。
请注意,实际操作前务必查阅最新的README.md,因为它包含了最新指令、依赖安装和任何潜在的变更。此外,具体配置文件的字段和可用选项可能会随项目更新而变化,因此建议始终对照最新的文档进行配置。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258