Burr项目中实现异步流式处理的技术解析
在Burr项目开发过程中,团队面临了一个关于异步流式处理的技术挑战。本文将深入分析这一技术问题的背景、解决方案以及实现细节。
问题背景
在现代应用开发中,流式处理已经成为处理大量数据或实时数据的常见需求。特别是在与外部API交互时,如AI服务提供商的聊天接口,流式响应能够显著提升用户体验。然而,Python中的异步生成器存在一个固有局限——它们无法直接返回最终结果值。
技术挑战
核心问题在于如何在使用异步生成器进行流式处理的同时,能够返回最终的完整结果和状态更新。传统的异步生成器只能通过yield逐步输出数据,而无法像普通函数那样使用return返回最终值。
解决方案
经过团队讨论,确定了一种优雅的解决方案:利用生成器的最后一个yield来传递最终结果。具体实现方式如下:
- 在流式处理过程中,每次迭代都yield部分结果
- 在最后一次迭代时,yield一个包含完整结果和状态更新的元组
- 对于同步生成器也采用相同的模式,保持API一致性
代码实现
以下是解决方案的典型代码实现:
@streaming_action(reads=["prompt"], writes=["prompt"])
async def streaming_chat_call(state: State, **run_kwargs) -> AsyncGenerator[Tuple[dict, Optional[State]], None]:
client = ai_service.Client()
response = client.chat.completions.create(
model='gpt-3.5-turbo',
messages=[{
'role': 'user',
'content': state["prompt"]
}],
temperature=0,
stream=True,
)
buffer = []
async for chunk in response:
delta = chunk.choices[0].delta.content
buffer.append(delta)
yield {'response': delta}, None
full_response = ''.join(buffer)
yield {'response': full_response}, state.append(response=full_response)
技术细节
-
类型注解:函数返回类型明确标注为AsyncGenerator,其中每个yield的值是一个元组,包含部分结果和可选的State更新。
-
状态管理:在流式处理过程中,通过buffer累积所有部分结果,最终拼接成完整响应。
-
终止信号:最后一个yield不仅包含完整结果,还包含状态更新,作为流式处理结束的标志。
-
一致性设计:同步和异步版本采用相同的设计模式,降低了使用者的学习成本。
优势分析
这种设计具有以下优点:
-
简洁性:无需引入特殊标记或额外协议,利用Python语言特性自然表达。
-
灵活性:既支持实时流式输出,又能获取最终处理结果。
-
可扩展性:可以轻松添加错误处理、中间状态保存等高级功能。
-
一致性:同步和异步API保持相同模式,减少认知负担。
实际应用
这种流式处理模式特别适用于以下场景:
- 大型语言模型的流式响应
- 大数据集的逐步处理
- 实时数据监控和分析
- 需要渐进式UI更新的Web应用
总结
Burr项目通过创新的设计解决了异步流式处理中的结果返回问题,为开发者提供了简洁而强大的工具。这种模式不仅适用于当前项目,也可以为其他需要处理流式数据的Python项目提供参考。通过合理利用语言特性和清晰的API设计,团队成功地将复杂的技术挑战转化为优雅的解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00