Burr项目中实现异步流式处理的技术解析
在Burr项目开发过程中,团队面临了一个关于异步流式处理的技术挑战。本文将深入分析这一技术问题的背景、解决方案以及实现细节。
问题背景
在现代应用开发中,流式处理已经成为处理大量数据或实时数据的常见需求。特别是在与外部API交互时,如AI服务提供商的聊天接口,流式响应能够显著提升用户体验。然而,Python中的异步生成器存在一个固有局限——它们无法直接返回最终结果值。
技术挑战
核心问题在于如何在使用异步生成器进行流式处理的同时,能够返回最终的完整结果和状态更新。传统的异步生成器只能通过yield逐步输出数据,而无法像普通函数那样使用return返回最终值。
解决方案
经过团队讨论,确定了一种优雅的解决方案:利用生成器的最后一个yield来传递最终结果。具体实现方式如下:
- 在流式处理过程中,每次迭代都yield部分结果
- 在最后一次迭代时,yield一个包含完整结果和状态更新的元组
- 对于同步生成器也采用相同的模式,保持API一致性
代码实现
以下是解决方案的典型代码实现:
@streaming_action(reads=["prompt"], writes=["prompt"])
async def streaming_chat_call(state: State, **run_kwargs) -> AsyncGenerator[Tuple[dict, Optional[State]], None]:
client = ai_service.Client()
response = client.chat.completions.create(
model='gpt-3.5-turbo',
messages=[{
'role': 'user',
'content': state["prompt"]
}],
temperature=0,
stream=True,
)
buffer = []
async for chunk in response:
delta = chunk.choices[0].delta.content
buffer.append(delta)
yield {'response': delta}, None
full_response = ''.join(buffer)
yield {'response': full_response}, state.append(response=full_response)
技术细节
-
类型注解:函数返回类型明确标注为AsyncGenerator,其中每个yield的值是一个元组,包含部分结果和可选的State更新。
-
状态管理:在流式处理过程中,通过buffer累积所有部分结果,最终拼接成完整响应。
-
终止信号:最后一个yield不仅包含完整结果,还包含状态更新,作为流式处理结束的标志。
-
一致性设计:同步和异步版本采用相同的设计模式,降低了使用者的学习成本。
优势分析
这种设计具有以下优点:
-
简洁性:无需引入特殊标记或额外协议,利用Python语言特性自然表达。
-
灵活性:既支持实时流式输出,又能获取最终处理结果。
-
可扩展性:可以轻松添加错误处理、中间状态保存等高级功能。
-
一致性:同步和异步API保持相同模式,减少认知负担。
实际应用
这种流式处理模式特别适用于以下场景:
- 大型语言模型的流式响应
- 大数据集的逐步处理
- 实时数据监控和分析
- 需要渐进式UI更新的Web应用
总结
Burr项目通过创新的设计解决了异步流式处理中的结果返回问题,为开发者提供了简洁而强大的工具。这种模式不仅适用于当前项目,也可以为其他需要处理流式数据的Python项目提供参考。通过合理利用语言特性和清晰的API设计,团队成功地将复杂的技术挑战转化为优雅的解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00