Burr项目中实现异步流式处理的技术解析
在Burr项目开发过程中,团队面临了一个关于异步流式处理的技术挑战。本文将深入分析这一技术问题的背景、解决方案以及实现细节。
问题背景
在现代应用开发中,流式处理已经成为处理大量数据或实时数据的常见需求。特别是在与外部API交互时,如AI服务提供商的聊天接口,流式响应能够显著提升用户体验。然而,Python中的异步生成器存在一个固有局限——它们无法直接返回最终结果值。
技术挑战
核心问题在于如何在使用异步生成器进行流式处理的同时,能够返回最终的完整结果和状态更新。传统的异步生成器只能通过yield逐步输出数据,而无法像普通函数那样使用return返回最终值。
解决方案
经过团队讨论,确定了一种优雅的解决方案:利用生成器的最后一个yield来传递最终结果。具体实现方式如下:
- 在流式处理过程中,每次迭代都yield部分结果
- 在最后一次迭代时,yield一个包含完整结果和状态更新的元组
- 对于同步生成器也采用相同的模式,保持API一致性
代码实现
以下是解决方案的典型代码实现:
@streaming_action(reads=["prompt"], writes=["prompt"])
async def streaming_chat_call(state: State, **run_kwargs) -> AsyncGenerator[Tuple[dict, Optional[State]], None]:
client = ai_service.Client()
response = client.chat.completions.create(
model='gpt-3.5-turbo',
messages=[{
'role': 'user',
'content': state["prompt"]
}],
temperature=0,
stream=True,
)
buffer = []
async for chunk in response:
delta = chunk.choices[0].delta.content
buffer.append(delta)
yield {'response': delta}, None
full_response = ''.join(buffer)
yield {'response': full_response}, state.append(response=full_response)
技术细节
-
类型注解:函数返回类型明确标注为AsyncGenerator,其中每个yield的值是一个元组,包含部分结果和可选的State更新。
-
状态管理:在流式处理过程中,通过buffer累积所有部分结果,最终拼接成完整响应。
-
终止信号:最后一个yield不仅包含完整结果,还包含状态更新,作为流式处理结束的标志。
-
一致性设计:同步和异步版本采用相同的设计模式,降低了使用者的学习成本。
优势分析
这种设计具有以下优点:
-
简洁性:无需引入特殊标记或额外协议,利用Python语言特性自然表达。
-
灵活性:既支持实时流式输出,又能获取最终处理结果。
-
可扩展性:可以轻松添加错误处理、中间状态保存等高级功能。
-
一致性:同步和异步API保持相同模式,减少认知负担。
实际应用
这种流式处理模式特别适用于以下场景:
- 大型语言模型的流式响应
- 大数据集的逐步处理
- 实时数据监控和分析
- 需要渐进式UI更新的Web应用
总结
Burr项目通过创新的设计解决了异步流式处理中的结果返回问题,为开发者提供了简洁而强大的工具。这种模式不仅适用于当前项目,也可以为其他需要处理流式数据的Python项目提供参考。通过合理利用语言特性和清晰的API设计,团队成功地将复杂的技术挑战转化为优雅的解决方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00