hello_tf_c_api 项目使用教程
2024-09-15 19:20:56作者:尤峻淳Whitney
1. 项目目录结构及介绍
hello_tf_c_api 项目是一个展示如何在 Windows、Linux 和 macOS 上运行 TensorFlow C API 的开源项目。项目的目录结构如下:
hello_tf_c_api/
├── doc/
│ ├── prepare_models.md
│ └── create_lib_file_from_dll_for_windows.md
├── models/
├── src/
│ ├── hello_tf.cpp
│ ├── load_graph.cpp
│ ├── create_tensor.cpp
│ ├── allocate_tensor.cpp
│ ├── run_session.cpp
│ ├── interface.cpp
│ ├── tensor_info.cpp
│ ├── graph_info.cpp
│ └── image_processing.cpp
├── test/
├── CMakeLists.txt
├── LICENSE
├── NOTICE
└── README.md
目录结构介绍
- doc/: 包含项目的文档文件,如模型准备指南和在 Windows 上从 DLL 创建 LIB 文件的说明。
- models/: 存放 TensorFlow 模型文件。
- src/: 包含项目的源代码文件,涵盖了从基本操作到高级功能的多个示例。
- test/: 包含项目的测试代码。
- CMakeLists.txt: 用于构建项目的 CMake 配置文件。
- LICENSE: 项目的开源许可证文件。
- NOTICE: 项目的通知文件。
- README.md: 项目的介绍和使用说明。
2. 项目的启动文件介绍
项目的启动文件位于 src/ 目录下,主要包括以下几个文件:
- hello_tf.cpp: 基本的 TensorFlow C API 使用示例。
- load_graph.cpp: 展示如何加载 TensorFlow 图。
- create_tensor.cpp: 创建张量的示例。
- allocate_tensor.cpp: 分配张量内存的示例。
- run_session.cpp: 运行 TensorFlow 会话的示例。
- interface.cpp: TensorFlow C API 接口使用示例。
- tensor_info.cpp: 获取张量信息的示例。
- graph_info.cpp: 获取图信息的示例。
- image_processing.cpp: 图像处理示例。
这些文件展示了如何使用 TensorFlow C API 进行各种操作,从基本的图和会话操作到高级的图像处理。
3. 项目的配置文件介绍
项目的配置文件主要是 CMakeLists.txt,用于配置项目的构建过程。以下是 CMakeLists.txt 的主要内容:
cmake_minimum_required(VERSION 3.5)
project(hello_tf_c_api)
set(CMAKE_CXX_STANDARD 11)
# 添加源文件
add_executable(hello_tf src/hello_tf.cpp)
add_executable(load_graph src/load_graph.cpp)
add_executable(create_tensor src/create_tensor.cpp)
add_executable(allocate_tensor src/allocate_tensor.cpp)
add_executable(run_session src/run_session.cpp)
add_executable(interface src/interface.cpp)
add_executable(tensor_info src/tensor_info.cpp)
add_executable(graph_info src/graph_info.cpp)
add_executable(image_processing src/image_processing.cpp)
# 链接 TensorFlow 库
link_directories(yourpath/to/tensorflow) # TensorFlow 库路径
target_link_libraries(hello_tf tensorflow)
target_link_libraries(load_graph tensorflow)
target_link_libraries(create_tensor tensorflow)
target_link_libraries(allocate_tensor tensorflow)
target_link_libraries(run_session tensorflow)
target_link_libraries(interface tensorflow)
target_link_libraries(tensor_info tensorflow)
target_link_libraries(graph_info tensorflow)
target_link_libraries(image_processing tensorflow)
配置文件介绍
- cmake_minimum_required(VERSION 3.5): 指定 CMake 的最低版本要求。
- project(hello_tf_c_api): 定义项目名称。
- set(CMAKE_CXX_STANDARD 11): 设置 C++ 标准为 C++11。
- add_executable: 添加可执行文件,每个文件对应一个示例。
- link_directories: 指定 TensorFlow 库的路径。
- target_link_libraries: 链接 TensorFlow 库到每个可执行文件。
通过 CMakeLists.txt,开发者可以方便地在不同平台上构建和运行项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19