FATE联邦学习模型训练与离线预测实践指南
2025-06-05 22:23:33作者:尤峻淳Whitney
联邦学习模型的生命周期管理
在FATE联邦学习框架中,模型从训练到预测的完整生命周期管理是实际应用中的关键环节。本文将详细介绍横向和纵向联邦学习场景下的模型训练、保存、加载以及离线预测的全流程实践方法。
纵向联邦学习实践
模型训练阶段
纵向联邦学习的训练流程涉及多个参与方(guest、host、arbiter),每个参与方持有数据的不同特征。以下是典型的训练代码结构:
from fate_client.pipeline.components.fate import HeteroLR, Evaluation, Reader
from fate_client.pipeline import FateFlowPipeline
# 初始化参与方
guest = '9999'
host = '10000'
arbiter = '10000'
pipeline = FateFlowPipeline().set_parties(guest=guest, host=host, arbiter=arbiter)
# 数据读取配置
reader_0 = Reader("reader_0", runtime_parties=dict(guest=guest, host=host))
reader_0.guest.task_parameters(namespace="db", name="hetero_guest_data")
reader_0.hosts[0].task_parameters(namespace="db", name="hetero_host_data")
# 模型训练配置
hetero_lr_0 = HeteroLR(
"hetero_lr_0",
epochs=10,
batch_size=16,
train_data=reader_0.outputs["output_data"]
)
# 评估配置
evaluation_0 = Evaluation(
'eval_0',
metrics=['auc'],
input_data=[hetero_lr_0.outputs['train_output_data']]
)
# 执行训练
pipeline.add_tasks([reader_0, hetero_lr_0, evaluation_0])
pipeline.compile()
pipeline.fit()
模型部署与保存
训练完成后,需要将模型部署为预测服务并保存模型文件:
# 部署模型
pipeline.deploy([hetero_lr_0])
# 保存整个pipeline
pipeline.dump_model("hetero_pipeline.pkl")
离线预测新数据
服务器重启后,可以加载保存的模型进行新数据预测:
# 加载模型
predict_pipeline = FateFlowPipeline.load_model("hetero_pipeline.pkl")
# 配置新数据读取
reader_1 = Reader("reader_1", runtime_parties=dict(guest=guest, host=host))
reader_1.guest.task_parameters(namespace="db", name="new_guest_data")
reader_1.hosts[0].task_parameters(namespace="db", name="new_host_data")
# 获取部署的预测流程
deployed_pipeline = pipeline.get_deployed_pipeline()
deployed_pipeline.input_data = reader_1.outputs["output_data"]
# 执行预测
predict_pipeline.add_tasks([reader_1, deployed_pipeline])
predict_pipeline.compile()
predict_pipeline.predict()
横向联邦学习实践
模型训练阶段
横向联邦学习中,各参与方持有数据的不同样本但特征相同:
from fate_client.pipeline.components.fate import HomoLR, Reader
# 初始化参与方
guest = '9999'
host = '10000'
arbiter = '10000'
pipeline = FateFlowPipeline().set_parties(guest=guest, host=host, arbiter=arbiter)
# 数据读取配置
reader_0 = Reader("reader_0", runtime_parties=dict(guest=guest, host=host))
reader_0.guest.task_parameters(namespace="db", name="homo_guest_data")
reader_0.hosts[0].task_parameters(namespace="db", name="homo_host_data")
# 模型训练配置
homo_lr_0 = HomoLR(
"homo_lr_0",
epochs=10,
batch_size=16,
train_data=reader_0.outputs["output_data"]
)
# 执行训练
pipeline.add_tasks([reader_0, homo_lr_0])
pipeline.compile()
pipeline.fit()
模型部署与预测
横向联邦的预测流程与纵向类似:
# 部署模型
pipeline.deploy([homo_lr_0])
pipeline.dump_model("homo_pipeline.pkl")
# 加载模型进行预测
predict_pipeline = FateFlowPipeline.load_model("homo_pipeline.pkl")
# 配置新数据
reader_1 = Reader("reader_1", runtime_parties=dict(guest=guest, host=host))
reader_1.guest.task_parameters(namespace="db", name="new_homo_guest_data")
reader_1.hosts[0].task_parameters(namespace="db", name="new_homo_host_data")
# 执行预测
deployed_pipeline = pipeline.get_deployed_pipeline()
deployed_pipeline.input_data = reader_1.outputs["output_data"]
predict_pipeline.add_tasks([reader_1, deployed_pipeline])
predict_pipeline.compile()
predict_pipeline.predict()
关键问题解析
-
模型部署(deploy)的作用:
- 推导预测工作流
- 修改组件状态为预测模式
- 可以多次执行,不受服务器重启影响
-
预测流程设计原则:
- 训练时使用的Reader组件不应包含在deploy中
- 预测时需要创建新的Reader组件来加载新数据
- get_deployed_pipeline方法获取的是可复用的预测流程模板
-
持久化与恢复:
- dump_model保存的是完整的pipeline定义和模型参数
- 重启后通过load_model恢复完整预测能力
- 模型文件包含所有参与方的必要信息
最佳实践建议
- 对于生产环境,建议将训练和预测流程分开管理
- 定期备份模型文件,特别是联邦学习中的多方模型
- 预测时确保新数据的特征结构与训练数据一致
- 对于大规模数据预测,考虑使用批量预测模式
- 监控预测过程中的资源使用情况,必要时进行性能优化
通过以上实践方法,可以有效地在FATE框架中实现联邦学习模型的完整生命周期管理,满足各种业务场景下的训练和预测需求。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443