FATE联邦学习模型训练与离线预测实践指南
2025-06-05 20:04:51作者:尤峻淳Whitney
联邦学习模型的生命周期管理
在FATE联邦学习框架中,模型从训练到预测的完整生命周期管理是实际应用中的关键环节。本文将详细介绍横向和纵向联邦学习场景下的模型训练、保存、加载以及离线预测的全流程实践方法。
纵向联邦学习实践
模型训练阶段
纵向联邦学习的训练流程涉及多个参与方(guest、host、arbiter),每个参与方持有数据的不同特征。以下是典型的训练代码结构:
from fate_client.pipeline.components.fate import HeteroLR, Evaluation, Reader
from fate_client.pipeline import FateFlowPipeline
# 初始化参与方
guest = '9999'
host = '10000'
arbiter = '10000'
pipeline = FateFlowPipeline().set_parties(guest=guest, host=host, arbiter=arbiter)
# 数据读取配置
reader_0 = Reader("reader_0", runtime_parties=dict(guest=guest, host=host))
reader_0.guest.task_parameters(namespace="db", name="hetero_guest_data")
reader_0.hosts[0].task_parameters(namespace="db", name="hetero_host_data")
# 模型训练配置
hetero_lr_0 = HeteroLR(
"hetero_lr_0",
epochs=10,
batch_size=16,
train_data=reader_0.outputs["output_data"]
)
# 评估配置
evaluation_0 = Evaluation(
'eval_0',
metrics=['auc'],
input_data=[hetero_lr_0.outputs['train_output_data']]
)
# 执行训练
pipeline.add_tasks([reader_0, hetero_lr_0, evaluation_0])
pipeline.compile()
pipeline.fit()
模型部署与保存
训练完成后,需要将模型部署为预测服务并保存模型文件:
# 部署模型
pipeline.deploy([hetero_lr_0])
# 保存整个pipeline
pipeline.dump_model("hetero_pipeline.pkl")
离线预测新数据
服务器重启后,可以加载保存的模型进行新数据预测:
# 加载模型
predict_pipeline = FateFlowPipeline.load_model("hetero_pipeline.pkl")
# 配置新数据读取
reader_1 = Reader("reader_1", runtime_parties=dict(guest=guest, host=host))
reader_1.guest.task_parameters(namespace="db", name="new_guest_data")
reader_1.hosts[0].task_parameters(namespace="db", name="new_host_data")
# 获取部署的预测流程
deployed_pipeline = pipeline.get_deployed_pipeline()
deployed_pipeline.input_data = reader_1.outputs["output_data"]
# 执行预测
predict_pipeline.add_tasks([reader_1, deployed_pipeline])
predict_pipeline.compile()
predict_pipeline.predict()
横向联邦学习实践
模型训练阶段
横向联邦学习中,各参与方持有数据的不同样本但特征相同:
from fate_client.pipeline.components.fate import HomoLR, Reader
# 初始化参与方
guest = '9999'
host = '10000'
arbiter = '10000'
pipeline = FateFlowPipeline().set_parties(guest=guest, host=host, arbiter=arbiter)
# 数据读取配置
reader_0 = Reader("reader_0", runtime_parties=dict(guest=guest, host=host))
reader_0.guest.task_parameters(namespace="db", name="homo_guest_data")
reader_0.hosts[0].task_parameters(namespace="db", name="homo_host_data")
# 模型训练配置
homo_lr_0 = HomoLR(
"homo_lr_0",
epochs=10,
batch_size=16,
train_data=reader_0.outputs["output_data"]
)
# 执行训练
pipeline.add_tasks([reader_0, homo_lr_0])
pipeline.compile()
pipeline.fit()
模型部署与预测
横向联邦的预测流程与纵向类似:
# 部署模型
pipeline.deploy([homo_lr_0])
pipeline.dump_model("homo_pipeline.pkl")
# 加载模型进行预测
predict_pipeline = FateFlowPipeline.load_model("homo_pipeline.pkl")
# 配置新数据
reader_1 = Reader("reader_1", runtime_parties=dict(guest=guest, host=host))
reader_1.guest.task_parameters(namespace="db", name="new_homo_guest_data")
reader_1.hosts[0].task_parameters(namespace="db", name="new_homo_host_data")
# 执行预测
deployed_pipeline = pipeline.get_deployed_pipeline()
deployed_pipeline.input_data = reader_1.outputs["output_data"]
predict_pipeline.add_tasks([reader_1, deployed_pipeline])
predict_pipeline.compile()
predict_pipeline.predict()
关键问题解析
-
模型部署(deploy)的作用:
- 推导预测工作流
- 修改组件状态为预测模式
- 可以多次执行,不受服务器重启影响
-
预测流程设计原则:
- 训练时使用的Reader组件不应包含在deploy中
- 预测时需要创建新的Reader组件来加载新数据
- get_deployed_pipeline方法获取的是可复用的预测流程模板
-
持久化与恢复:
- dump_model保存的是完整的pipeline定义和模型参数
- 重启后通过load_model恢复完整预测能力
- 模型文件包含所有参与方的必要信息
最佳实践建议
- 对于生产环境,建议将训练和预测流程分开管理
- 定期备份模型文件,特别是联邦学习中的多方模型
- 预测时确保新数据的特征结构与训练数据一致
- 对于大规模数据预测,考虑使用批量预测模式
- 监控预测过程中的资源使用情况,必要时进行性能优化
通过以上实践方法,可以有效地在FATE框架中实现联邦学习模型的完整生命周期管理,满足各种业务场景下的训练和预测需求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1