FATE-LLM中基于Adapter的参数聚合机制解析
背景概述
FATE-LLM作为FATE联邦学习框架中的大语言模型组件,其pellm模块支持基于参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)技术的联邦训练。在实际应用中,开发者常常会使用如LoRA等Adapter方法来降低大模型微调时的参数量,这时就涉及到如何正确处理基础模型参数和Adapter参数的聚合问题。
核心机制解析
在FATE-LLM的pellm实现中,参数聚合的关键在于区分可训练参数和固定参数。当使用Adapter方法时,系统会智能地仅聚合Adapter部分的参数,而保持基础模型参数不变。这一机制主要通过以下方式实现:
-
参数筛选机制:系统通过检查参数的requires_grad属性来识别可训练参数。在PyTorch中,只有requires_grad=True的参数才会在反向传播时计算梯度,这也成为区分Adapter参数和基础模型参数的依据。
-
聚合器设计:FATE的聚合器(BaseAggregator)在聚合过程中会主动筛选需要聚合的参数。具体实现中,聚合器会遍历模型的所有参数,但只对那些标记为可训练的参数执行聚合操作。
-
联邦训练流程:在典型的联邦训练过程中,客户端本地训练后,系统会自动提取模型的可训练参数(即Adapter参数)上传至服务端进行聚合,而基础模型参数则保持不变。
技术实现细节
在底层实现上,FATE-LLM利用了PyTorch的参数管理系统。当使用PeftModel包装基础模型时,Peft框架会自动管理参数的可训练状态:
- Adapter参数(如LoRA层)默认设置为可训练(requires_grad=True)
- 基础模型参数默认设置为不可训练(requires_grad=False)
这种设计使得聚合器可以无缝地只聚合Adapter部分参数,而无需额外的配置。对于开发者而言,只需要正常使用PeftModel包装基础模型,系统就会自动处理参数聚合的细节。
实际应用意义
这种设计带来了几个重要优势:
- 通信效率:仅传输Adapter参数大幅减少了联邦学习中的通信开销,这对大语言模型尤为重要。
- 隐私保护:基础模型参数不参与传输,降低了模型信息泄露的风险。
- 灵活性:支持各种Adapter方法(LoRA、AdapterFusion等)的即插即用。
总结
FATE-LLM通过智能识别可训练参数的方式,实现了对Adapter方法的原生支持。这种设计既保持了联邦学习框架的通用性,又针对大语言模型场景做了特殊优化,为开发者提供了便捷高效的联邦微调方案。理解这一机制有助于开发者更好地利用FATE-LLM进行大模型的联邦学习实践。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00