FATE-LLM中基于Adapter的参数聚合机制解析
背景概述
FATE-LLM作为FATE联邦学习框架中的大语言模型组件,其pellm模块支持基于参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)技术的联邦训练。在实际应用中,开发者常常会使用如LoRA等Adapter方法来降低大模型微调时的参数量,这时就涉及到如何正确处理基础模型参数和Adapter参数的聚合问题。
核心机制解析
在FATE-LLM的pellm实现中,参数聚合的关键在于区分可训练参数和固定参数。当使用Adapter方法时,系统会智能地仅聚合Adapter部分的参数,而保持基础模型参数不变。这一机制主要通过以下方式实现:
-
参数筛选机制:系统通过检查参数的requires_grad属性来识别可训练参数。在PyTorch中,只有requires_grad=True的参数才会在反向传播时计算梯度,这也成为区分Adapter参数和基础模型参数的依据。
-
聚合器设计:FATE的聚合器(BaseAggregator)在聚合过程中会主动筛选需要聚合的参数。具体实现中,聚合器会遍历模型的所有参数,但只对那些标记为可训练的参数执行聚合操作。
-
联邦训练流程:在典型的联邦训练过程中,客户端本地训练后,系统会自动提取模型的可训练参数(即Adapter参数)上传至服务端进行聚合,而基础模型参数则保持不变。
技术实现细节
在底层实现上,FATE-LLM利用了PyTorch的参数管理系统。当使用PeftModel包装基础模型时,Peft框架会自动管理参数的可训练状态:
- Adapter参数(如LoRA层)默认设置为可训练(requires_grad=True)
- 基础模型参数默认设置为不可训练(requires_grad=False)
这种设计使得聚合器可以无缝地只聚合Adapter部分参数,而无需额外的配置。对于开发者而言,只需要正常使用PeftModel包装基础模型,系统就会自动处理参数聚合的细节。
实际应用意义
这种设计带来了几个重要优势:
- 通信效率:仅传输Adapter参数大幅减少了联邦学习中的通信开销,这对大语言模型尤为重要。
- 隐私保护:基础模型参数不参与传输,降低了模型信息泄露的风险。
- 灵活性:支持各种Adapter方法(LoRA、AdapterFusion等)的即插即用。
总结
FATE-LLM通过智能识别可训练参数的方式,实现了对Adapter方法的原生支持。这种设计既保持了联邦学习框架的通用性,又针对大语言模型场景做了特殊优化,为开发者提供了便捷高效的联邦微调方案。理解这一机制有助于开发者更好地利用FATE-LLM进行大模型的联邦学习实践。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~092Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile01
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python010
- PparlantThe heavy-duty guidance framework for customer-facing LLM agentsPython06
热门内容推荐
最新内容推荐
项目优选









