Open-Sora训练过程中数据集样本数为0的问题分析与解决方案
2025-05-08 16:49:08作者:郜逊炳
在使用Open-Sora v1.1版本进行自定义数据集训练时,用户可能会遇到一个典型问题:虽然数据集包含180个样本,但在实际训练过程中系统显示"Total training samples: 0",导致训练无法正常进行。本文将深入分析这一问题的成因,并提供详细的解决方案。
问题现象分析
当用户启动训练流程时,系统日志显示以下关键信息:
- 初始阶段正确识别到数据集包含180个样本
- 模型参数加载正常,共731.90M可训练参数
- 训练开始后,系统报告"Total training samples: 0"
- 每个epoch耗时极短,没有实际训练过程
根本原因
通过对用户提供的示例数据集分析,发现问题根源在于视频帧数不足:
path,text,num_frames,height,width,aspect_ratio,fps
/path/to/video1.mp4,CT,11,512,512,1.0,11
/path/to/video2.mp4,CT,11,512,512,1.0,11
/path/to/video3.mp4,CT,11,512,512,1.0,11
Open-Sora v1.1版本的默认配置要求视频至少包含50帧,而用户数据集中每个视频仅有11帧,远低于系统要求的最小帧数阈值。因此,系统在预处理阶段过滤掉了所有不符合要求的样本,导致最终可用于训练的样本数为0。
解决方案
方案一:检查并修正视频帧数
- 使用专业视频处理工具检查视频实际帧数
- 确保视频长度足够,通常1秒视频包含25-30帧
- 对于短视频,可以考虑合并多个视频片段
- 重新生成数据集CSV文件,确保num_frames字段准确反映实际帧数
方案二:调整训练配置参数
如果确实需要使用短视频训练,可以修改以下配置参数:
- 修改bucket配置:调整最小帧数要求
- 调整frame_interval参数:允许处理更短的视频序列
- 自定义数据预处理逻辑:重写样本过滤条件
技术建议
- 在训练前使用
ffprobe等工具批量检查视频属性 - 建立数据预处理流水线,自动过滤不符合要求的样本
- 对于特殊应用场景,考虑自定义模型输入尺寸
- 在训练日志中添加更详细的样本过滤信息,便于调试
总结
Open-Sora作为先进的视频生成模型,对输入数据有一定要求。理解并正确处理这些要求是成功训练的关键。通过本文提供的解决方案,用户可以有效地解决训练样本数为0的问题,顺利开展模型训练工作。建议用户在准备数据集时,充分考虑模型输入要求,建立规范的数据预处理流程,以确保训练过程的顺利进行。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328