Hypothesis项目中使用策略限制嵌套数据类中的浮点数值范围
在软件开发过程中,我们经常需要生成测试数据来验证代码的正确性。Hypothesis是一个强大的Python测试库,它能够自动生成各种测试用例。本文将重点介绍如何在使用Hypothesis生成嵌套数据类实例时,对浮点数值进行范围限制。
问题背景
当我们需要测试一个处理嵌套数据结构的系统时,Hypothesis的from_type
策略非常有用,它可以自动为复杂的数据类生成实例。然而,有时我们需要对这些生成的值施加额外的约束条件。
例如,当这些数据最终需要被序列化为JSON格式时,JSON规范不支持NaN(非数字)和Infinity(无穷大)这样的特殊浮点数值。因此,我们需要确保生成的测试数据中不包含这些特殊值。
解决方案
Hypothesis提供了一个优雅的解决方案:通过register_type_strategy
函数注册全局类型策略。对于浮点数类型,我们可以这样设置:
from hypothesis import strategies as st
st.register_type_strategy(
float,
st.floats(
allow_nan=False,
allow_infinity=False,
allow_subnormal=False
)
)
这段代码注册了一个全局的浮点数生成策略,它会应用于所有浮点数字段,包括:
- 禁止生成NaN值
- 禁止生成无穷大值
- 禁止生成非正规数(极小值)
实际应用示例
假设我们有以下嵌套的数据类结构:
from dataclasses import dataclass
@dataclass
class Child:
f1: float
f2: float | None
@dataclass
class Parent:
child: Child
在注册了上述策略后,使用from_type(Parent).example()
生成的实例将自动遵守这些约束条件,确保所有浮点数字段都是有效的JSON可序列化值。
注意事项
-
策略作用范围:注册的类型策略是全局性的,会影响项目中所有使用该类型的策略生成。
-
优先级:如果为特定字段显式定义了策略,它将覆盖全局注册的策略。
-
可重现性:为了确保测试的可重现性,建议在测试开始时设置随机种子,或者使用Hypothesis提供的
@reproduce_failure
装饰器。 -
性能影响:限制浮点数范围可能会略微影响生成效率,因为需要过滤掉不符合条件的值。
扩展应用
这种技术不仅适用于浮点数,还可以应用于其他需要全局约束的类型。例如:
- 限制字符串长度
- 控制整数范围
- 确保日期在合理范围内
通过合理使用类型策略注册,我们可以确保生成的测试数据既满足测试需求,又符合业务规则和系统约束条件。
总结
在Hypothesis测试框架中,通过register_type_strategy
注册全局类型策略是一种强大而灵活的方法,可以确保生成的测试数据符合特定约束条件。这种方法特别适合处理嵌套数据结构中的类型约束问题,能够显著提高测试代码的健壮性和可维护性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









