Hypothesis项目中使用策略限制嵌套数据类中的浮点数值范围
在软件开发过程中,我们经常需要生成测试数据来验证代码的正确性。Hypothesis是一个强大的Python测试库,它能够自动生成各种测试用例。本文将重点介绍如何在使用Hypothesis生成嵌套数据类实例时,对浮点数值进行范围限制。
问题背景
当我们需要测试一个处理嵌套数据结构的系统时,Hypothesis的from_type策略非常有用,它可以自动为复杂的数据类生成实例。然而,有时我们需要对这些生成的值施加额外的约束条件。
例如,当这些数据最终需要被序列化为JSON格式时,JSON规范不支持NaN(非数字)和Infinity(无穷大)这样的特殊浮点数值。因此,我们需要确保生成的测试数据中不包含这些特殊值。
解决方案
Hypothesis提供了一个优雅的解决方案:通过register_type_strategy函数注册全局类型策略。对于浮点数类型,我们可以这样设置:
from hypothesis import strategies as st
st.register_type_strategy(
float,
st.floats(
allow_nan=False,
allow_infinity=False,
allow_subnormal=False
)
)
这段代码注册了一个全局的浮点数生成策略,它会应用于所有浮点数字段,包括:
- 禁止生成NaN值
- 禁止生成无穷大值
- 禁止生成非正规数(极小值)
实际应用示例
假设我们有以下嵌套的数据类结构:
from dataclasses import dataclass
@dataclass
class Child:
f1: float
f2: float | None
@dataclass
class Parent:
child: Child
在注册了上述策略后,使用from_type(Parent).example()生成的实例将自动遵守这些约束条件,确保所有浮点数字段都是有效的JSON可序列化值。
注意事项
-
策略作用范围:注册的类型策略是全局性的,会影响项目中所有使用该类型的策略生成。
-
优先级:如果为特定字段显式定义了策略,它将覆盖全局注册的策略。
-
可重现性:为了确保测试的可重现性,建议在测试开始时设置随机种子,或者使用Hypothesis提供的
@reproduce_failure装饰器。 -
性能影响:限制浮点数范围可能会略微影响生成效率,因为需要过滤掉不符合条件的值。
扩展应用
这种技术不仅适用于浮点数,还可以应用于其他需要全局约束的类型。例如:
- 限制字符串长度
- 控制整数范围
- 确保日期在合理范围内
通过合理使用类型策略注册,我们可以确保生成的测试数据既满足测试需求,又符合业务规则和系统约束条件。
总结
在Hypothesis测试框架中,通过register_type_strategy注册全局类型策略是一种强大而灵活的方法,可以确保生成的测试数据符合特定约束条件。这种方法特别适合处理嵌套数据结构中的类型约束问题,能够显著提高测试代码的健壮性和可维护性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00