首页
/ 利用扩散模型进行符号音乐生成

利用扩散模型进行符号音乐生成

2024-05-30 22:48:04作者:傅爽业Veleda

在这个数字化时代,人工智能与音乐的融合变得越来越普遍。今天,我们向您推荐一个创新的开源项目——Symbolic Music Generation with Diffusion Models。这个项目采用先进的扩散模型和TransformerMDN技术,为符号音乐的自动化创作开辟了全新的路径。

项目介绍

Symbolic Music Generation with Diffusion Models 是一种基于Python的解决方案,用于生成具有象征意义的音乐序列。该项目结合了谷歌Magenta的MusicVAE模型与扩散模型(Diffusion Models)和多模态分布网络(TransformerMDN),能够学习并创造出丰富多样的音乐旋律。它不仅适用于学术研究,也为音乐爱好者提供了一种探索音乐创造力的新工具。

项目技术分析

项目的核心是利用预训练的MusicVAE对原始MIDI数据进行编码,然后通过两种模型进行训练:一是扩散模型(Diffusion Models),二是TransformerMDN。这两种模型都能够从固定长度的潜在序列中生成音乐序列。训练过程简单易行,只需运行特定的Python脚本即可。

  • 扩散模型:以噪声为基础,逐步恢复原始信号的结构,从而生成音乐序列。
  • TransformerMDN:是一种基于Transformer架构的多模态分布网络,可以捕捉到音乐序列中的复杂依赖关系。

项目及技术应用场景

  • 音乐创作:无论是专业作曲家还是业余爱好者,都可以借助此工具快速生成新的旋律,激发灵感。
  • 音乐研究:对于音乐信息检索(MIR)领域的研究人员,这是一个理想的实验平台,可用于探索音乐生成模型的新算法和技术。
  • 教育应用:在音乐教学中,可以作为辅助工具,帮助学生理解音乐结构和模式。

项目特点

  • 兼容性广泛:项目基于Python,且依赖管理清晰,支持Anaconda环境,易于安装和集成其他库。
  • 灵活的数据处理:提供了从Lakh MIDI Dataset到MusicVAE编码,再到预处理序列的完整流程。
  • 强大的生成能力:两种模型各具特色,能生成多样性和连贯性兼备的音乐序列。
  • 简便的训练和采样:只需简单的命令行参数,即可启动模型训练和样本生成。

如果你对音乐生成或人工智能在音乐创作上的应用感兴趣,那么Symbolic Music Generation with Diffusion Models绝对是不容错过的资源。快来加入这个社区,共同挖掘音乐与AI融合的无限可能吧!

引用该项目时,请按照以下格式:

@inproceedings{
  mittal2021symbolicdiffusion,
  title={Symbolic Music Generation with Diffusion Models},
  author={Gautam Mittal and Jesse Engel and Curtis Hawthorne and Ian Simon},
  booktitle={Proceedings of the 22nd International Society for Music Information Retrieval Conference},
  year={2021},
  url={https://archives.ismir.net/ismir2021/paper/000058.pdf}
}

请注意,这并非官方的Google产品。

登录后查看全文
热门项目推荐

热门内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8