利用扩散模型进行符号音乐生成
2024-05-30 22:48:04作者:傅爽业Veleda
在这个数字化时代,人工智能与音乐的融合变得越来越普遍。今天,我们向您推荐一个创新的开源项目——Symbolic Music Generation with Diffusion Models。这个项目采用先进的扩散模型和TransformerMDN技术,为符号音乐的自动化创作开辟了全新的路径。
项目介绍
Symbolic Music Generation with Diffusion Models 是一种基于Python的解决方案,用于生成具有象征意义的音乐序列。该项目结合了谷歌Magenta的MusicVAE模型与扩散模型(Diffusion Models)和多模态分布网络(TransformerMDN),能够学习并创造出丰富多样的音乐旋律。它不仅适用于学术研究,也为音乐爱好者提供了一种探索音乐创造力的新工具。
项目技术分析
项目的核心是利用预训练的MusicVAE对原始MIDI数据进行编码,然后通过两种模型进行训练:一是扩散模型(Diffusion Models),二是TransformerMDN。这两种模型都能够从固定长度的潜在序列中生成音乐序列。训练过程简单易行,只需运行特定的Python脚本即可。
- 扩散模型:以噪声为基础,逐步恢复原始信号的结构,从而生成音乐序列。
- TransformerMDN:是一种基于Transformer架构的多模态分布网络,可以捕捉到音乐序列中的复杂依赖关系。
项目及技术应用场景
- 音乐创作:无论是专业作曲家还是业余爱好者,都可以借助此工具快速生成新的旋律,激发灵感。
- 音乐研究:对于音乐信息检索(MIR)领域的研究人员,这是一个理想的实验平台,可用于探索音乐生成模型的新算法和技术。
- 教育应用:在音乐教学中,可以作为辅助工具,帮助学生理解音乐结构和模式。
项目特点
- 兼容性广泛:项目基于Python,且依赖管理清晰,支持Anaconda环境,易于安装和集成其他库。
- 灵活的数据处理:提供了从Lakh MIDI Dataset到MusicVAE编码,再到预处理序列的完整流程。
- 强大的生成能力:两种模型各具特色,能生成多样性和连贯性兼备的音乐序列。
- 简便的训练和采样:只需简单的命令行参数,即可启动模型训练和样本生成。
如果你对音乐生成或人工智能在音乐创作上的应用感兴趣,那么Symbolic Music Generation with Diffusion Models绝对是不容错过的资源。快来加入这个社区,共同挖掘音乐与AI融合的无限可能吧!
引用该项目时,请按照以下格式:
@inproceedings{
mittal2021symbolicdiffusion,
title={Symbolic Music Generation with Diffusion Models},
author={Gautam Mittal and Jesse Engel and Curtis Hawthorne and Ian Simon},
booktitle={Proceedings of the 22nd International Society for Music Information Retrieval Conference},
year={2021},
url={https://archives.ismir.net/ismir2021/paper/000058.pdf}
}
请注意,这并非官方的Google产品。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193