利用扩散模型进行符号音乐生成
2024-05-30 22:48:04作者:傅爽业Veleda
在这个数字化时代,人工智能与音乐的融合变得越来越普遍。今天,我们向您推荐一个创新的开源项目——Symbolic Music Generation with Diffusion Models。这个项目采用先进的扩散模型和TransformerMDN技术,为符号音乐的自动化创作开辟了全新的路径。
项目介绍
Symbolic Music Generation with Diffusion Models 是一种基于Python的解决方案,用于生成具有象征意义的音乐序列。该项目结合了谷歌Magenta的MusicVAE模型与扩散模型(Diffusion Models)和多模态分布网络(TransformerMDN),能够学习并创造出丰富多样的音乐旋律。它不仅适用于学术研究,也为音乐爱好者提供了一种探索音乐创造力的新工具。
项目技术分析
项目的核心是利用预训练的MusicVAE对原始MIDI数据进行编码,然后通过两种模型进行训练:一是扩散模型(Diffusion Models),二是TransformerMDN。这两种模型都能够从固定长度的潜在序列中生成音乐序列。训练过程简单易行,只需运行特定的Python脚本即可。
- 扩散模型:以噪声为基础,逐步恢复原始信号的结构,从而生成音乐序列。
- TransformerMDN:是一种基于Transformer架构的多模态分布网络,可以捕捉到音乐序列中的复杂依赖关系。
项目及技术应用场景
- 音乐创作:无论是专业作曲家还是业余爱好者,都可以借助此工具快速生成新的旋律,激发灵感。
- 音乐研究:对于音乐信息检索(MIR)领域的研究人员,这是一个理想的实验平台,可用于探索音乐生成模型的新算法和技术。
- 教育应用:在音乐教学中,可以作为辅助工具,帮助学生理解音乐结构和模式。
项目特点
- 兼容性广泛:项目基于Python,且依赖管理清晰,支持Anaconda环境,易于安装和集成其他库。
- 灵活的数据处理:提供了从Lakh MIDI Dataset到MusicVAE编码,再到预处理序列的完整流程。
- 强大的生成能力:两种模型各具特色,能生成多样性和连贯性兼备的音乐序列。
- 简便的训练和采样:只需简单的命令行参数,即可启动模型训练和样本生成。
如果你对音乐生成或人工智能在音乐创作上的应用感兴趣,那么Symbolic Music Generation with Diffusion Models绝对是不容错过的资源。快来加入这个社区,共同挖掘音乐与AI融合的无限可能吧!
引用该项目时,请按照以下格式:
@inproceedings{
mittal2021symbolicdiffusion,
title={Symbolic Music Generation with Diffusion Models},
author={Gautam Mittal and Jesse Engel and Curtis Hawthorne and Ian Simon},
booktitle={Proceedings of the 22nd International Society for Music Information Retrieval Conference},
year={2021},
url={https://archives.ismir.net/ismir2021/paper/000058.pdf}
}
请注意,这并非官方的Google产品。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5