首页
/ 推荐使用:Conditional Discrete Contrastive Diffusion(CDCD)——跨模态条件生成的新标杆

推荐使用:Conditional Discrete Contrastive Diffusion(CDCD)——跨模态条件生成的新标杆

2024-06-11 20:51:45作者:丁柯新Fawn

在当前的深度学习和人工智能领域中,生成模型正日益成为创新的焦点。其中,Conditional Discrete Contrastive Diffusion (CDCD) 是一项针对跨模态和条件生成的前沿研究,其在ICLR 2023上发表,并受到了广泛关注。

1. 项目简介

CDCD 提出了一种增强输入与输出之间联系的策略,通过对比学习方法最大化给定输入和生成输出之间的互信息。这种方法被应用于三个多模态的条件合成任务,包括舞蹈到音乐生成(AIST++ 和 TikTok Dance-Music)、文本到图像合成(CUB200 和 MSCOCO),以及类别条件图像合成(ImageNet)。项目提供了清晰的代码实现,使得研究人员可以轻松复现实验结果并进行扩展应用。

2. 技术解析

CDCD 使用了离散对比扩散模型,通过步进平行对比扩散和样本级辅助扩散等多种模式,结合不同负采样方法,提升了模型的性能。此外,该项目还兼容预训练的JukeBox和DALL-E模型,为用户提供了更多可能性。

3. 应用场景

  • 舞蹈生成:将音乐转化为逼真的舞蹈动作序列,可用于娱乐、教育或虚拟现实应用。
  • 文本到图像:从描述性文字生成相应图像,对插图创作、视觉表达和艺术设计有重大意义。
  • 图像分类:以类条件方式生成图像,有助于数据增强和模型训练。

4. 项目特点

  • 创新的对比学习策略:利用对比学习优化输入与输出的关联性,提升生成质量。
  • 广泛的任务覆盖:适用于多个跨模态生成任务,展现了模型的通用性和适应性。
  • 易于使用的代码库:提供详细的环境配置指南,方便快速启动实验。
  • 预训练模型支持:提供预训练模型,使快速验证和应用成为可能。

如果你正在寻找一个强大的跨模态生成工具,或者对对比学习和扩散模型感兴趣,那么CDCD绝对值得尝试。加入这个社区,一起探索人工智能在创意表达和信息处理中的无限可能吧!

引用本文研究时,请使用以下格式:

@inproceedings{zhu2022discrete,
  title={Discrete Contrastive Diffusion for Cross-Modal Music and Image Generation},
  author={Zhu, Ye and Wu, Yu and Olszewski, Kyle and Ren, Jian and Tulyakov, Sergey and Yan, Yan},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2023}
}
登录后查看全文
热门项目推荐

热门内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K
kernelkernel
deepin linux kernel
C
22
6
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
518
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0