推荐开源项目:ASAP - 面向情感分析与评分预测的中文评论数据集
2024-05-22 09:44:32作者:裴锟轩Denise
在自然语言处理领域,数据是推动模型发展的关键。今天,我们要为大家推荐一个由美团点评团队发布的开源项目——ASAP,它是一个专为中文语境下面向方面的情感分析(Aspect Category Sentiment Analysis, ACSA)和评分预测(Rating Prediction, RP)设计的大规模评论数据集。
1、项目介绍
ASAP 是 NAACL 2021 论文中的主角,源自中国领先的在线至线下(O2O)电子商务平台——大众点评App上的46,730条真实餐厅评论。这个数据集不仅包含了五星级别的评分信息,而且每个评论都经过人工标注,针对18个预定义的方面类别(如食物、服务、环境等)标记了情感极性。数据集按照训练、验证和测试三部分进行随机划分,分别包含36,850、4,940和4,940条评论。
2、项目技术分析
ASAP 数据集的设计使得研究人员能够深入了解用户对于不同方面的真实反馈,从而更准确地进行情感分析和评分预测。此外,该项目提供了易于使用的读取文件的代码示例,方便数据科学家和NLP研究者快速上手。数据标签包括四种状态:正面(1),中立(0),负面(-1)以及未提及(-2),确保了对各种评论情况的全面覆盖。
3、项目及技术应用场景
ASAP 可广泛应用于以下场景:
- 情感分析工具开发:帮助开发出能理解并分析中文评论情感的AI系统。
- 用户体验提升:电商平台或社交媒体可以利用该数据改进推荐算法,提高用户满意度。
- 商业智能:企业可以通过分析客户评价来优化产品和服务。
- 教学与研究:提供给学术界一个丰富的资源,用于培养和评估NLP模型的性能。
4、项目特点
- 大规模数据:超过46,000条真实评论,覆盖广泛的用户反馈和多维度的评价。
- 深度标注:涵盖了18个方面的详细情感极性,提升了分析的精细度。
- 人工审核:所有的标注都是通过人工完成,保证了数据质量。
- 易于使用:提供的Python代码示例使数据加载简单快捷。
如果你在寻找一个高质量的中文评论数据集来进行情感分析或者评分预测的研究,那么ASAP无疑是不可错过的选择。想要了解更多详情,请参阅项目的GitHub页面,并引用相关的研究论文以支持这个有贡献的开源项目!
@inproceedings{bu-etal-2021-asap,
title = "{ASAP}: A {C}hinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction",
author = "Bu, Jiahao and
Ren, Lei and
Zheng, Shuang and
Yang, Yang and
Wang, Jingang and
Zhang, Fuzheng and
Wu, Wei",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.naacl-main.167",
pages = "2069--2079"
}
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328