推荐开源项目:ASAP - 面向情感分析与评分预测的中文评论数据集
2024-05-22 09:44:32作者:裴锟轩Denise
在自然语言处理领域,数据是推动模型发展的关键。今天,我们要为大家推荐一个由美团点评团队发布的开源项目——ASAP,它是一个专为中文语境下面向方面的情感分析(Aspect Category Sentiment Analysis, ACSA)和评分预测(Rating Prediction, RP)设计的大规模评论数据集。
1、项目介绍
ASAP 是 NAACL 2021 论文中的主角,源自中国领先的在线至线下(O2O)电子商务平台——大众点评App上的46,730条真实餐厅评论。这个数据集不仅包含了五星级别的评分信息,而且每个评论都经过人工标注,针对18个预定义的方面类别(如食物、服务、环境等)标记了情感极性。数据集按照训练、验证和测试三部分进行随机划分,分别包含36,850、4,940和4,940条评论。
2、项目技术分析
ASAP 数据集的设计使得研究人员能够深入了解用户对于不同方面的真实反馈,从而更准确地进行情感分析和评分预测。此外,该项目提供了易于使用的读取文件的代码示例,方便数据科学家和NLP研究者快速上手。数据标签包括四种状态:正面(1),中立(0),负面(-1)以及未提及(-2),确保了对各种评论情况的全面覆盖。
3、项目及技术应用场景
ASAP 可广泛应用于以下场景:
- 情感分析工具开发:帮助开发出能理解并分析中文评论情感的AI系统。
- 用户体验提升:电商平台或社交媒体可以利用该数据改进推荐算法,提高用户满意度。
- 商业智能:企业可以通过分析客户评价来优化产品和服务。
- 教学与研究:提供给学术界一个丰富的资源,用于培养和评估NLP模型的性能。
4、项目特点
- 大规模数据:超过46,000条真实评论,覆盖广泛的用户反馈和多维度的评价。
- 深度标注:涵盖了18个方面的详细情感极性,提升了分析的精细度。
- 人工审核:所有的标注都是通过人工完成,保证了数据质量。
- 易于使用:提供的Python代码示例使数据加载简单快捷。
如果你在寻找一个高质量的中文评论数据集来进行情感分析或者评分预测的研究,那么ASAP无疑是不可错过的选择。想要了解更多详情,请参阅项目的GitHub页面,并引用相关的研究论文以支持这个有贡献的开源项目!
@inproceedings{bu-etal-2021-asap,
title = "{ASAP}: A {C}hinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction",
author = "Bu, Jiahao and
Ren, Lei and
Zheng, Shuang and
Yang, Yang and
Wang, Jingang and
Zhang, Fuzheng and
Wu, Wei",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.naacl-main.167",
pages = "2069--2079"
}
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
628
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
74
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K