首页
/ 推荐开源项目:ASAP - 面向情感分析与评分预测的中文评论数据集

推荐开源项目:ASAP - 面向情感分析与评分预测的中文评论数据集

2024-05-22 09:44:32作者:裴锟轩Denise

在自然语言处理领域,数据是推动模型发展的关键。今天,我们要为大家推荐一个由美团点评团队发布的开源项目——ASAP,它是一个专为中文语境下面向方面的情感分析(Aspect Category Sentiment Analysis, ACSA)和评分预测(Rating Prediction, RP)设计的大规模评论数据集。

1、项目介绍

ASAP 是 NAACL 2021 论文中的主角,源自中国领先的在线至线下(O2O)电子商务平台——大众点评App上的46,730条真实餐厅评论。这个数据集不仅包含了五星级别的评分信息,而且每个评论都经过人工标注,针对18个预定义的方面类别(如食物、服务、环境等)标记了情感极性。数据集按照训练、验证和测试三部分进行随机划分,分别包含36,850、4,940和4,940条评论。

2、项目技术分析

ASAP 数据集的设计使得研究人员能够深入了解用户对于不同方面的真实反馈,从而更准确地进行情感分析和评分预测。此外,该项目提供了易于使用的读取文件的代码示例,方便数据科学家和NLP研究者快速上手。数据标签包括四种状态:正面(1),中立(0),负面(-1)以及未提及(-2),确保了对各种评论情况的全面覆盖。

3、项目及技术应用场景

ASAP 可广泛应用于以下场景:

  • 情感分析工具开发:帮助开发出能理解并分析中文评论情感的AI系统。
  • 用户体验提升:电商平台或社交媒体可以利用该数据改进推荐算法,提高用户满意度。
  • 商业智能:企业可以通过分析客户评价来优化产品和服务。
  • 教学与研究:提供给学术界一个丰富的资源,用于培养和评估NLP模型的性能。

4、项目特点

  • 大规模数据:超过46,000条真实评论,覆盖广泛的用户反馈和多维度的评价。
  • 深度标注:涵盖了18个方面的详细情感极性,提升了分析的精细度。
  • 人工审核:所有的标注都是通过人工完成,保证了数据质量。
  • 易于使用:提供的Python代码示例使数据加载简单快捷。

如果你在寻找一个高质量的中文评论数据集来进行情感分析或者评分预测的研究,那么ASAP无疑是不可错过的选择。想要了解更多详情,请参阅项目的GitHub页面,并引用相关的研究论文以支持这个有贡献的开源项目!

@inproceedings{bu-etal-2021-asap,
    title = "{ASAP}: A {C}hinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction",
    author = "Bu, Jiahao  and
      Ren, Lei  and
      Zheng, Shuang  and
      Yang, Yang  and
      Wang, Jingang  and
      Zhang, Fuzheng  and
      Wu, Wei",
    booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
    month = jun,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.naacl-main.167",
    pages = "2069--2079"
}
热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-CasesHarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4