GroundingLMM 项目数据集准备全指南
2025-06-10 06:53:37作者:裘晴惠Vivianne
项目背景与数据集概述
GroundingLMM 是一个多模态大语言模型项目,旨在实现图像理解、区域标注、视觉问答等多种功能。要训练这样一个强大的模型,需要准备多种类型的数据集,每种数据集对应不同的视觉语言任务。
数据集目录结构总览
在开始下载具体数据集前,先了解整个项目的目录结构规划:
├── GranDf
├── GranDf_HA_images
├── Semantic_Segm
├── Refer_Segm
├── RefCoco_Reg
├── visual_genome
├── llava_dataset
├── coco_2017
├── coco_2014
└── flikcr_30k
1. GranD-f 基础对话数据集
GranD-f 是项目核心数据集,包含四种子集:
- 高质量人工标注集:项目团队专门标注
- Open-PSG GCG:基于场景图生成的对话
- RefCOCO-g GCG:基于指代表达的对话
- Flickr-30k GCG:基于Flickr图像的对话
数据准备要点
- 标注文件需放置在
GranDf/annotations目录下 - 图像文件按训练/验证集分开存放
- 需要额外下载COCO和Flickr30k的原始图像
2. 语义分割数据集
语义分割数据用于训练模型理解图像中的物体边界和类别,包含五个主流数据集:
- ADE20K:MIT发布的场景解析数据集
- COCO-Stuff:COCO的扩展版,增加"stuff"类别
- PASCAL-Part:包含物体部件的细粒度标注
- PACO-LVIS:针对部分和属性的标注
- Mapillary:街景图像数据集
使用建议
- 各数据集标注格式不同,需统一处理
- 建议先从小规模数据开始验证流程
- 注意不同数据集的类别体系差异
3. 指代表达数据集
用于训练模型理解基于语言描述的图像区域定位,包含:
- RefCOCO/RefCOCO+/RefCOCOg:基于COCO图像的指代表达
- RefCLEF:较早的指代表达数据集
注意事项
- 需要与COCO2014图像配合使用
- 不同子集的标注侧重点不同
- RefCLEF使用独立的图像集
4. 区域级标注数据集
用于训练模型生成针对特定图像区域的描述,包含:
- RefCOCO系列:基于指代表达的标注
- Visual Genome:丰富的区域-描述对
- Flickr30k:社交媒体图像的描述
数据处理技巧
- 注意边界框标注的归一化处理
- 可结合视觉特征和文本特征联合训练
- 不同数据集的描述风格差异较大
5. 图像描述数据集
主要使用COCO Caption数据集,这是最常用的图像描述基准数据集。
最佳实践
- 可利用已有的预训练特征加速训练
- 注意平衡不同长度描述的样本
- 可尝试多种描述生成策略
6. 视觉问答数据集
使用LLaVA-instruct-150k,这是一个大规模的视觉问答指令数据集。
使用建议
- 问题类型多样,适合训练通用VQA能力
- 可与纯文本QA数据结合训练
- 注意处理开放式问题的评估
7. GranD预训练数据集
这是项目的核心预训练数据,包含多种任务格式:
- 简短描述生成
- 指代表达生成
- 指代表达分割
关键点
- 使用LMDB格式提高IO效率
- 多任务联合训练提升模型泛化能力
- 注意任务间的样本平衡
实际应用建议
- 从小规模开始:先验证流程可用性
- 分批下载:大数据集可分步获取
- 版本控制:记录各数据集的版本信息
- 数据检查:下载后验证数据完整性
- 预处理缓存:对常用特征进行预处理
通过系统性地准备这些数据集,研究者可以完整复现GroundingLMM项目的训练过程,或基于此框架开发新的多模态模型。不同数据集间的协同效应将显著提升模型的多任务处理能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140