GroundingLMM 项目数据集准备全指南
2025-06-10 11:01:12作者:裘晴惠Vivianne
项目背景与数据集概述
GroundingLMM 是一个多模态大语言模型项目,旨在实现图像理解、区域标注、视觉问答等多种功能。要训练这样一个强大的模型,需要准备多种类型的数据集,每种数据集对应不同的视觉语言任务。
数据集目录结构总览
在开始下载具体数据集前,先了解整个项目的目录结构规划:
├── GranDf
├── GranDf_HA_images
├── Semantic_Segm
├── Refer_Segm
├── RefCoco_Reg
├── visual_genome
├── llava_dataset
├── coco_2017
├── coco_2014
└── flikcr_30k
1. GranD-f 基础对话数据集
GranD-f 是项目核心数据集,包含四种子集:
- 高质量人工标注集:项目团队专门标注
- Open-PSG GCG:基于场景图生成的对话
- RefCOCO-g GCG:基于指代表达的对话
- Flickr-30k GCG:基于Flickr图像的对话
数据准备要点
- 标注文件需放置在
GranDf/annotations目录下 - 图像文件按训练/验证集分开存放
- 需要额外下载COCO和Flickr30k的原始图像
2. 语义分割数据集
语义分割数据用于训练模型理解图像中的物体边界和类别,包含五个主流数据集:
- ADE20K:MIT发布的场景解析数据集
- COCO-Stuff:COCO的扩展版,增加"stuff"类别
- PASCAL-Part:包含物体部件的细粒度标注
- PACO-LVIS:针对部分和属性的标注
- Mapillary:街景图像数据集
使用建议
- 各数据集标注格式不同,需统一处理
- 建议先从小规模数据开始验证流程
- 注意不同数据集的类别体系差异
3. 指代表达数据集
用于训练模型理解基于语言描述的图像区域定位,包含:
- RefCOCO/RefCOCO+/RefCOCOg:基于COCO图像的指代表达
- RefCLEF:较早的指代表达数据集
注意事项
- 需要与COCO2014图像配合使用
- 不同子集的标注侧重点不同
- RefCLEF使用独立的图像集
4. 区域级标注数据集
用于训练模型生成针对特定图像区域的描述,包含:
- RefCOCO系列:基于指代表达的标注
- Visual Genome:丰富的区域-描述对
- Flickr30k:社交媒体图像的描述
数据处理技巧
- 注意边界框标注的归一化处理
- 可结合视觉特征和文本特征联合训练
- 不同数据集的描述风格差异较大
5. 图像描述数据集
主要使用COCO Caption数据集,这是最常用的图像描述基准数据集。
最佳实践
- 可利用已有的预训练特征加速训练
- 注意平衡不同长度描述的样本
- 可尝试多种描述生成策略
6. 视觉问答数据集
使用LLaVA-instruct-150k,这是一个大规模的视觉问答指令数据集。
使用建议
- 问题类型多样,适合训练通用VQA能力
- 可与纯文本QA数据结合训练
- 注意处理开放式问题的评估
7. GranD预训练数据集
这是项目的核心预训练数据,包含多种任务格式:
- 简短描述生成
- 指代表达生成
- 指代表达分割
关键点
- 使用LMDB格式提高IO效率
- 多任务联合训练提升模型泛化能力
- 注意任务间的样本平衡
实际应用建议
- 从小规模开始:先验证流程可用性
- 分批下载:大数据集可分步获取
- 版本控制:记录各数据集的版本信息
- 数据检查:下载后验证数据完整性
- 预处理缓存:对常用特征进行预处理
通过系统性地准备这些数据集,研究者可以完整复现GroundingLMM项目的训练过程,或基于此框架开发新的多模态模型。不同数据集间的协同效应将显著提升模型的多任务处理能力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30