Stable Diffusion WebUI AMDGPU项目中的DirectML运行时错误分析与解决方案
问题概述
在Stable Diffusion WebUI AMDGPU项目中,当用户尝试使用高分辨率修复(Hires Fix)功能时,系统会抛出"RuntimeError: don't know how to restore data location of torch.storage.UntypedStorage (tagged with privateuseone:0)"的错误。这个问题主要影响使用AMD显卡(如RX 580)的用户,特别是在Windows系统上通过DirectML后端运行Stable Diffusion的情况。
错误背景
该错误发生在图像处理流程的高分辨率放大阶段,具体是在加载RealESRGAN模型进行图像超分辨率处理时。系统尝试将模型权重加载到显存时,由于DirectML后端与PyTorch存储系统的兼容性问题,导致无法正确恢复存储位置。
技术分析
-
错误根源:PyTorch的存储系统(Storage)在DirectML后端下无法正确处理模型权重的设备位置映射。当RealESRGAN模型尝试将权重加载到标记为"privateuseone:0"(DirectML设备标识)的存储位置时,PyTorch的默认恢复机制无法识别这种设备类型。
-
影响范围:主要影响使用以下配置的用户:
- AMD显卡(特别是较旧的型号如RX 580)
- 使用DirectML后端
- 启用了高分辨率修复功能
- 使用RealESRGAN等需要额外模型的上采样器
-
环境因素:
- 与特定的AMD驱动版本可能存在关联
- 使用了一些优化参数如--opt-sub-quad-attention、--lowvram等
解决方案
-
版本回退:目前最稳定的解决方案是回退到WebUI的v1.7.0-amd版本。这个版本经过充分测试,对DirectML后端的支持更为成熟。
-
替代方案:如果必须使用最新版本,可以尝试以下方法:
- 更换其他上采样方法(如Lanczos或Nearest等不需要额外模型的方法)
- 禁用高分辨率修复功能
- 使用CPU进行上采样(虽然速度较慢)
-
长期建议:等待项目维护者发布针对DirectML后端的修复补丁,或者考虑切换到Linux系统使用ROCm后端,可能获得更好的兼容性。
技术展望
这个问题反映了PyTorch在非CUDA后端(特别是DirectML)支持上的一些局限性。随着AMD在AI领域的持续投入,预计未来会有更完善的解决方案:
- PyTorch对DirectML后端的原生支持改进
- AMD驱动的持续优化
- Stable Diffusion生态对AMD硬件更好的适配
对于普通用户而言,目前最实用的方案还是使用经过充分测试的稳定版本,避免在关键工作流程中使用实验性功能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00