Stable Diffusion WebUI AMDGPU项目中的DirectML运行时错误分析与解决方案
问题概述
在Stable Diffusion WebUI AMDGPU项目中,当用户尝试使用高分辨率修复(Hires Fix)功能时,系统会抛出"RuntimeError: don't know how to restore data location of torch.storage.UntypedStorage (tagged with privateuseone:0)"的错误。这个问题主要影响使用AMD显卡(如RX 580)的用户,特别是在Windows系统上通过DirectML后端运行Stable Diffusion的情况。
错误背景
该错误发生在图像处理流程的高分辨率放大阶段,具体是在加载RealESRGAN模型进行图像超分辨率处理时。系统尝试将模型权重加载到显存时,由于DirectML后端与PyTorch存储系统的兼容性问题,导致无法正确恢复存储位置。
技术分析
-
错误根源:PyTorch的存储系统(Storage)在DirectML后端下无法正确处理模型权重的设备位置映射。当RealESRGAN模型尝试将权重加载到标记为"privateuseone:0"(DirectML设备标识)的存储位置时,PyTorch的默认恢复机制无法识别这种设备类型。
-
影响范围:主要影响使用以下配置的用户:
- AMD显卡(特别是较旧的型号如RX 580)
- 使用DirectML后端
- 启用了高分辨率修复功能
- 使用RealESRGAN等需要额外模型的上采样器
-
环境因素:
- 与特定的AMD驱动版本可能存在关联
- 使用了一些优化参数如--opt-sub-quad-attention、--lowvram等
解决方案
-
版本回退:目前最稳定的解决方案是回退到WebUI的v1.7.0-amd版本。这个版本经过充分测试,对DirectML后端的支持更为成熟。
-
替代方案:如果必须使用最新版本,可以尝试以下方法:
- 更换其他上采样方法(如Lanczos或Nearest等不需要额外模型的方法)
- 禁用高分辨率修复功能
- 使用CPU进行上采样(虽然速度较慢)
-
长期建议:等待项目维护者发布针对DirectML后端的修复补丁,或者考虑切换到Linux系统使用ROCm后端,可能获得更好的兼容性。
技术展望
这个问题反映了PyTorch在非CUDA后端(特别是DirectML)支持上的一些局限性。随着AMD在AI领域的持续投入,预计未来会有更完善的解决方案:
- PyTorch对DirectML后端的原生支持改进
- AMD驱动的持续优化
- Stable Diffusion生态对AMD硬件更好的适配
对于普通用户而言,目前最实用的方案还是使用经过充分测试的稳定版本,避免在关键工作流程中使用实验性功能。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









