首页
/ Stable Diffusion WebUI AMDGPU项目中的DirectML运行时错误分析与解决方案

Stable Diffusion WebUI AMDGPU项目中的DirectML运行时错误分析与解决方案

2025-07-04 04:52:11作者:蔡丛锟

问题概述

在Stable Diffusion WebUI AMDGPU项目中,当用户尝试使用高分辨率修复(Hires Fix)功能时,系统会抛出"RuntimeError: don't know how to restore data location of torch.storage.UntypedStorage (tagged with privateuseone:0)"的错误。这个问题主要影响使用AMD显卡(如RX 580)的用户,特别是在Windows系统上通过DirectML后端运行Stable Diffusion的情况。

错误背景

该错误发生在图像处理流程的高分辨率放大阶段,具体是在加载RealESRGAN模型进行图像超分辨率处理时。系统尝试将模型权重加载到显存时,由于DirectML后端与PyTorch存储系统的兼容性问题,导致无法正确恢复存储位置。

技术分析

  1. 错误根源:PyTorch的存储系统(Storage)在DirectML后端下无法正确处理模型权重的设备位置映射。当RealESRGAN模型尝试将权重加载到标记为"privateuseone:0"(DirectML设备标识)的存储位置时,PyTorch的默认恢复机制无法识别这种设备类型。

  2. 影响范围:主要影响使用以下配置的用户:

    • AMD显卡(特别是较旧的型号如RX 580)
    • 使用DirectML后端
    • 启用了高分辨率修复功能
    • 使用RealESRGAN等需要额外模型的上采样器
  3. 环境因素

    • 与特定的AMD驱动版本可能存在关联
    • 使用了一些优化参数如--opt-sub-quad-attention、--lowvram等

解决方案

  1. 版本回退:目前最稳定的解决方案是回退到WebUI的v1.7.0-amd版本。这个版本经过充分测试,对DirectML后端的支持更为成熟。

  2. 替代方案:如果必须使用最新版本,可以尝试以下方法:

    • 更换其他上采样方法(如Lanczos或Nearest等不需要额外模型的方法)
    • 禁用高分辨率修复功能
    • 使用CPU进行上采样(虽然速度较慢)
  3. 长期建议:等待项目维护者发布针对DirectML后端的修复补丁,或者考虑切换到Linux系统使用ROCm后端,可能获得更好的兼容性。

技术展望

这个问题反映了PyTorch在非CUDA后端(特别是DirectML)支持上的一些局限性。随着AMD在AI领域的持续投入,预计未来会有更完善的解决方案:

  1. PyTorch对DirectML后端的原生支持改进
  2. AMD驱动的持续优化
  3. Stable Diffusion生态对AMD硬件更好的适配

对于普通用户而言,目前最实用的方案还是使用经过充分测试的稳定版本,避免在关键工作流程中使用实验性功能。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
509