NVIDIA GPU Operator 中 DCGM Exporter 自定义指标支持的技术解析
在 Kubernetes 集群中监控 GPU 资源的使用情况是运维和开发人员的重要需求。NVIDIA GPU Operator 通过集成 DCGM Exporter 组件,为 Prometheus 提供了丰富的 GPU 监控指标。近期社区提出了一项重要功能增强——通过 Helm values 文件直接定义 DCGM Exporter 的自定义监控指标,这显著简化了用户部署配置的复杂度。
传统方案中,用户需要预先创建包含自定义指标定义的 ConfigMap,并通过 ClusterPolicy CRD 中的 config 字段引用。这种方式虽然可行,但增加了部署的复杂性,用户需要维护额外的 Kubernetes 资源。新方案的核心改进是允许在 Helm values.yaml 文件中直接以 YAML 格式声明自定义指标,由 Operator 自动处理后续的配置生成和注入。
从技术实现角度看,这个功能增强不需要修改 ClusterPolicy CRD 的架构。Operator 的 Helm chart 已经为其他组件(如 k8s-device-plugin 和 mig-manager)提供了类似的配置模式。实现方案会复用现有的 config 字段机制,但通过 Helm 模板将用户提供的自定义指标配置自动转换为 ConfigMap 内容。这种设计保持了向后兼容性,同时提供了更友好的用户体验。
对于运维人员而言,新功能意味着他们可以在部署 GPU Operator 时,直接在 values.yaml 中定义如下的自定义指标配置:
dcgmExporter:
customMetrics:
- name: "user_defined_metric"
field: "custom.field"
description: "User defined metric description"
这项改进特别适合需要监控特定 GPU 指标的场景,比如某些深度学习框架特有的性能计数器或业务自定义的利用率指标。通过简化配置流程,降低了使用门槛,使得更多用户能够充分利用 DCGM Exporter 的强大监控能力。
从架构演进的角度看,这是 GPU Operator 向更声明式、更用户友好方向发展的又一进步。未来可能会看到更多组件采用类似的配置模式,进一步简化 GPU 资源在 Kubernetes 中的管理体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00