NVIDIA GPU Operator 中 DCGM Exporter 自定义指标支持的技术解析
在 Kubernetes 集群中监控 GPU 资源的使用情况是运维和开发人员的重要需求。NVIDIA GPU Operator 通过集成 DCGM Exporter 组件,为 Prometheus 提供了丰富的 GPU 监控指标。近期社区提出了一项重要功能增强——通过 Helm values 文件直接定义 DCGM Exporter 的自定义监控指标,这显著简化了用户部署配置的复杂度。
传统方案中,用户需要预先创建包含自定义指标定义的 ConfigMap,并通过 ClusterPolicy CRD 中的 config 字段引用。这种方式虽然可行,但增加了部署的复杂性,用户需要维护额外的 Kubernetes 资源。新方案的核心改进是允许在 Helm values.yaml 文件中直接以 YAML 格式声明自定义指标,由 Operator 自动处理后续的配置生成和注入。
从技术实现角度看,这个功能增强不需要修改 ClusterPolicy CRD 的架构。Operator 的 Helm chart 已经为其他组件(如 k8s-device-plugin 和 mig-manager)提供了类似的配置模式。实现方案会复用现有的 config 字段机制,但通过 Helm 模板将用户提供的自定义指标配置自动转换为 ConfigMap 内容。这种设计保持了向后兼容性,同时提供了更友好的用户体验。
对于运维人员而言,新功能意味着他们可以在部署 GPU Operator 时,直接在 values.yaml 中定义如下的自定义指标配置:
dcgmExporter:
customMetrics:
- name: "user_defined_metric"
field: "custom.field"
description: "User defined metric description"
这项改进特别适合需要监控特定 GPU 指标的场景,比如某些深度学习框架特有的性能计数器或业务自定义的利用率指标。通过简化配置流程,降低了使用门槛,使得更多用户能够充分利用 DCGM Exporter 的强大监控能力。
从架构演进的角度看,这是 GPU Operator 向更声明式、更用户友好方向发展的又一进步。未来可能会看到更多组件采用类似的配置模式,进一步简化 GPU 资源在 Kubernetes 中的管理体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00