NVIDIA GPU Operator中监控MIG设备的关键指标配置指南
背景介绍
在Kubernetes环境中使用NVIDIA GPU Operator时,监控多实例GPU(MIG)设备的资源利用率是一个常见需求。MIG技术允许将单个物理GPU划分为多个独立运行的GPU实例,每个实例都有自己的内存、缓存和计算核心。
监控挑战
默认情况下,DCGM(Data Center GPU Manager)导出器不会报告MIG设备的传统GPU利用率指标(DCGM_FI_DEV_GPU_UTIL),这是因为MIG设备的架构特性使得传统监控方式不再适用。这给运维人员带来了监控盲区。
解决方案
替代指标选择
经过社区验证,可以使用DCGM_FI_PROF_SM_OCCUPANCY作为替代指标来监控MIG设备的计算资源利用率。这个指标反映了流式多处理器(SM)的占用情况,能够准确反映MIG实例的计算负载。
配置步骤
-
修改DCGM导出器配置:需要编辑dcgm-exporter的配置文件,通常在
/etc/dcgm-exporter/dcp-metrics-included.csv路径下。 -
启用性能指标:在配置文件中取消对
DCGM_FI_PROF_*系列指标的注释,确保这些指标能够被采集和导出。 -
Prometheus指标处理:由于MIG设备会产生多个指标实例,需要在Prometheus查询中使用适当的聚合函数来处理这些数据。
最佳实践
-
指标聚合:对于MIG设备,建议使用
max或avg等聚合函数来处理多个实例的指标数据,以获得整体视图。 -
标签处理:注意DCGM导出器生成的指标标签,确保能够正确区分不同MIG实例的数据。
-
监控看板调整:根据MIG特性调整Grafana等可视化工具中的监控面板,重点关注SM占用率和内存使用率等关键指标。
总结
通过合理配置DCGM导出器并选择适当的替代指标,完全可以实现对MIG设备的全面监控。这一解决方案已在生产环境得到验证,能够有效解决MIG设备监控的痛点问题。随着NVIDIA生态的不断发展,预计未来会有更多针对MIG设备的专用监控指标和工具出现。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00