首页
/ NVIDIA GPU Operator中监控MIG设备的关键指标配置指南

NVIDIA GPU Operator中监控MIG设备的关键指标配置指南

2025-07-04 03:06:05作者:郜逊炳

背景介绍

在Kubernetes环境中使用NVIDIA GPU Operator时,监控多实例GPU(MIG)设备的资源利用率是一个常见需求。MIG技术允许将单个物理GPU划分为多个独立运行的GPU实例,每个实例都有自己的内存、缓存和计算核心。

监控挑战

默认情况下,DCGM(Data Center GPU Manager)导出器不会报告MIG设备的传统GPU利用率指标(DCGM_FI_DEV_GPU_UTIL),这是因为MIG设备的架构特性使得传统监控方式不再适用。这给运维人员带来了监控盲区。

解决方案

替代指标选择

经过社区验证,可以使用DCGM_FI_PROF_SM_OCCUPANCY作为替代指标来监控MIG设备的计算资源利用率。这个指标反映了流式多处理器(SM)的占用情况,能够准确反映MIG实例的计算负载。

配置步骤

  1. 修改DCGM导出器配置:需要编辑dcgm-exporter的配置文件,通常在/etc/dcgm-exporter/dcp-metrics-included.csv路径下。

  2. 启用性能指标:在配置文件中取消对DCGM_FI_PROF_*系列指标的注释,确保这些指标能够被采集和导出。

  3. Prometheus指标处理:由于MIG设备会产生多个指标实例,需要在Prometheus查询中使用适当的聚合函数来处理这些数据。

最佳实践

  • 指标聚合:对于MIG设备,建议使用maxavg等聚合函数来处理多个实例的指标数据,以获得整体视图。

  • 标签处理:注意DCGM导出器生成的指标标签,确保能够正确区分不同MIG实例的数据。

  • 监控看板调整:根据MIG特性调整Grafana等可视化工具中的监控面板,重点关注SM占用率和内存使用率等关键指标。

总结

通过合理配置DCGM导出器并选择适当的替代指标,完全可以实现对MIG设备的全面监控。这一解决方案已在生产环境得到验证,能够有效解决MIG设备监控的痛点问题。随着NVIDIA生态的不断发展,预计未来会有更多针对MIG设备的专用监控指标和工具出现。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
27
11
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
469
3.48 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
flutter_flutterflutter_flutter
暂无简介
Dart
716
172
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
kernelkernel
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
208
83
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
rainbondrainbond
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1