NVIDIA GPU Operator中监控MIG设备的关键指标配置指南
背景介绍
在Kubernetes环境中使用NVIDIA GPU Operator时,监控多实例GPU(MIG)设备的资源利用率是一个常见需求。MIG技术允许将单个物理GPU划分为多个独立运行的GPU实例,每个实例都有自己的内存、缓存和计算核心。
监控挑战
默认情况下,DCGM(Data Center GPU Manager)导出器不会报告MIG设备的传统GPU利用率指标(DCGM_FI_DEV_GPU_UTIL),这是因为MIG设备的架构特性使得传统监控方式不再适用。这给运维人员带来了监控盲区。
解决方案
替代指标选择
经过社区验证,可以使用DCGM_FI_PROF_SM_OCCUPANCY作为替代指标来监控MIG设备的计算资源利用率。这个指标反映了流式多处理器(SM)的占用情况,能够准确反映MIG实例的计算负载。
配置步骤
-
修改DCGM导出器配置:需要编辑dcgm-exporter的配置文件,通常在
/etc/dcgm-exporter/dcp-metrics-included.csv路径下。 -
启用性能指标:在配置文件中取消对
DCGM_FI_PROF_*系列指标的注释,确保这些指标能够被采集和导出。 -
Prometheus指标处理:由于MIG设备会产生多个指标实例,需要在Prometheus查询中使用适当的聚合函数来处理这些数据。
最佳实践
-
指标聚合:对于MIG设备,建议使用
max或avg等聚合函数来处理多个实例的指标数据,以获得整体视图。 -
标签处理:注意DCGM导出器生成的指标标签,确保能够正确区分不同MIG实例的数据。
-
监控看板调整:根据MIG特性调整Grafana等可视化工具中的监控面板,重点关注SM占用率和内存使用率等关键指标。
总结
通过合理配置DCGM导出器并选择适当的替代指标,完全可以实现对MIG设备的全面监控。这一解决方案已在生产环境得到验证,能够有效解决MIG设备监控的痛点问题。随着NVIDIA生态的不断发展,预计未来会有更多针对MIG设备的专用监控指标和工具出现。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00