NetExec项目中SMB组枚举的PTH认证问题分析
问题背景
在NetExec工具(原CrackMapExec)的SMB模块中,当使用Pass-the-Hash(PTH)技术进行组枚举时,发现了一个认证问题。具体表现为:使用NT哈希进行组枚举(--groups参数)时会失败,而同样的哈希在进行用户枚举(--users参数)时却能正常工作。
技术细节分析
该问题源于NetExec底层依赖的Pywerview库在处理纯NT哈希时的特殊行为。Pywerview期望接收LM:NT格式的哈希对,而NetExec默认只传递NT哈希部分。这种不一致性导致了组枚举功能失败。
问题复现
当执行以下命令时会出现错误:
netexec smb <目标IP> -u <用户名> -H <NT哈希> --groups
错误信息显示:"NTLM needs domain\username and a password"
根本原因
-
代码路径差异:NetExec中
--users和--groups参数采用了不同的认证处理路径。用户枚举功能能够正确处理纯NT哈希,而组枚举功能则调用了Pywerview库中更严格的认证检查。 -
哈希格式要求:Pywerview内部实现要求LM:NT格式的哈希对,即使LM部分可以为空(传统上使用
aad3b435b51404eeaad3b435b51404ee作为空LM哈希的占位符)。 -
验证机制:NetExec的哈希验证仅检查长度,不验证格式,导致纯NT哈希可以通过验证但在后续处理中失败。
解决方案与变通方法
临时解决方案
- 添加空LM哈希前缀:
nxc smb <目标> -u "Administrator" -H "aad3b435b51404eeaad3b435b51404ee:<NTHASH>" --groups
- 使用任意32字符LM部分:
nxc smb <目标> -u "Administrator" -H "abcdabcdabcdabcdabcdabcdabcdabcd:<NTHASH>" --groups
永久修复方案
在NetExec的代码中,可以借鉴Pywerview CLI工具的做法:当检测到纯NT哈希时,自动为其添加空LM哈希前缀。这种处理方式既保持了向后兼容性,又解决了组枚举功能的问题。
技术影响与最佳实践
-
哈希格式标准化:在渗透测试工具链中,LM:NT哈希对仍然是广泛支持的标准格式,即使在实际攻击中LM部分已很少使用。
-
工具互操作性:当安全工具依赖多个库时,需要注意各库对认证凭据的格式要求可能存在差异。
-
防御意义:防御方应意识到,攻击者可以通过多种方式传递哈希凭证,包括使用空LM哈希的变通方法。
总结
这个案例展示了红队工具开发中常见的接口兼容性问题。通过分析NetExec与Pywerview的交互方式,我们不仅找到了问题的解决方案,也加深了对Windows认证机制和工具链设计的理解。对于渗透测试人员来说,理解这些底层细节有助于更有效地使用工具和排查问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00