生成旋律的RNN-LSTM项目教程
2024-09-17 23:38:41作者:劳婵绚Shirley
1. 项目目录结构及介绍
generating-melodies-with-rnn-lstm/
├── 1 - Series overview/
├── 2 - Music theory concepts for melody generation/
├── 3 - Preprocessing dataset for melody generation pt 1/
├── 4 - Preprocessing dataset for melody generation pt 2/
├── 5 - Preprocessing dataset for melody generation pt 3/
├── 6 - Preparing the training samples/
├── 7 - Training a Neural Network to Generate Melodies/
├── 8 - Generating Melodies with LSTM/
├── 9 - Converting Generated Melodies to MIDI/
├── .gitignore
├── LICENSE
└── README.md
目录结构介绍
- 1 - Series overview: 系列概述,包含项目的基本介绍和目标。
- 2 - Music theory concepts for melody generation: 音乐理论概念,介绍生成旋律所需的音乐理论知识。
- 3 - Preprocessing dataset for melody generation pt 1: 数据预处理第一部分,介绍如何准备数据集。
- 4 - Preprocessing dataset for melody generation pt 2: 数据预处理第二部分,继续介绍数据预处理的步骤。
- 5 - Preprocessing dataset for melody generation pt 3: 数据预处理第三部分,完成数据预处理的步骤。
- 6 - Preparing the training samples: 准备训练样本,介绍如何准备用于训练的样本。
- 7 - Training a Neural Network to Generate Melodies: 训练神经网络,介绍如何训练生成旋律的神经网络。
- 8 - Generating Melodies with LSTM: 使用LSTM生成旋律,介绍如何使用训练好的模型生成旋律。
- 9 - Converting Generated Melodies to MIDI: 将生成的旋律转换为MIDI格式,介绍如何将生成的旋律转换为MIDI文件。
- .gitignore: Git忽略文件,指定哪些文件和目录不需要被Git管理。
- LICENSE: 项目许可证,说明项目的开源许可证类型。
- README.md: 项目说明文件,包含项目的概述、安装和使用说明。
2. 项目的启动文件介绍
项目的启动文件通常位于8 - Generating Melodies with LSTM目录中。该目录包含用于生成旋律的Python脚本。启动文件的主要功能是加载训练好的模型并生成新的旋律。
启动文件示例
# 导入必要的库
import tensorflow as tf
from tensorflow.keras.models import load_model
# 加载训练好的模型
model = load_model('path_to_saved_model')
# 生成旋律
generated_melody = model.predict(input_data)
# 保存生成的旋律
with open('generated_melody.mid', 'wb') as f:
f.write(generated_melody)
3. 项目的配置文件介绍
项目的配置文件通常位于3 - Preprocessing dataset for melody generation pt 1目录中。该目录包含用于数据预处理的配置文件,如数据集路径、模型参数等。
配置文件示例
{
"dataset_path": "path_to_dataset",
"model_params": {
"lstm_units": 128,
"batch_size": 64,
"epochs": 100
}
}
配置文件介绍
- dataset_path: 数据集路径,指定用于训练的数据集位置。
- model_params: 模型参数,包含LSTM单元的数量、批量大小和训练轮数等参数。
通过以上配置文件,用户可以自定义数据集路径和模型参数,以适应不同的训练需求。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
282
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
272
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871