生成旋律的RNN-LSTM项目教程
2024-09-17 18:37:48作者:劳婵绚Shirley
1. 项目目录结构及介绍
generating-melodies-with-rnn-lstm/
├── 1 - Series overview/
├── 2 - Music theory concepts for melody generation/
├── 3 - Preprocessing dataset for melody generation pt 1/
├── 4 - Preprocessing dataset for melody generation pt 2/
├── 5 - Preprocessing dataset for melody generation pt 3/
├── 6 - Preparing the training samples/
├── 7 - Training a Neural Network to Generate Melodies/
├── 8 - Generating Melodies with LSTM/
├── 9 - Converting Generated Melodies to MIDI/
├── .gitignore
├── LICENSE
└── README.md
目录结构介绍
- 1 - Series overview: 系列概述,包含项目的基本介绍和目标。
- 2 - Music theory concepts for melody generation: 音乐理论概念,介绍生成旋律所需的音乐理论知识。
- 3 - Preprocessing dataset for melody generation pt 1: 数据预处理第一部分,介绍如何准备数据集。
- 4 - Preprocessing dataset for melody generation pt 2: 数据预处理第二部分,继续介绍数据预处理的步骤。
- 5 - Preprocessing dataset for melody generation pt 3: 数据预处理第三部分,完成数据预处理的步骤。
- 6 - Preparing the training samples: 准备训练样本,介绍如何准备用于训练的样本。
- 7 - Training a Neural Network to Generate Melodies: 训练神经网络,介绍如何训练生成旋律的神经网络。
- 8 - Generating Melodies with LSTM: 使用LSTM生成旋律,介绍如何使用训练好的模型生成旋律。
- 9 - Converting Generated Melodies to MIDI: 将生成的旋律转换为MIDI格式,介绍如何将生成的旋律转换为MIDI文件。
- .gitignore: Git忽略文件,指定哪些文件和目录不需要被Git管理。
- LICENSE: 项目许可证,说明项目的开源许可证类型。
- README.md: 项目说明文件,包含项目的概述、安装和使用说明。
2. 项目的启动文件介绍
项目的启动文件通常位于8 - Generating Melodies with LSTM
目录中。该目录包含用于生成旋律的Python脚本。启动文件的主要功能是加载训练好的模型并生成新的旋律。
启动文件示例
# 导入必要的库
import tensorflow as tf
from tensorflow.keras.models import load_model
# 加载训练好的模型
model = load_model('path_to_saved_model')
# 生成旋律
generated_melody = model.predict(input_data)
# 保存生成的旋律
with open('generated_melody.mid', 'wb') as f:
f.write(generated_melody)
3. 项目的配置文件介绍
项目的配置文件通常位于3 - Preprocessing dataset for melody generation pt 1
目录中。该目录包含用于数据预处理的配置文件,如数据集路径、模型参数等。
配置文件示例
{
"dataset_path": "path_to_dataset",
"model_params": {
"lstm_units": 128,
"batch_size": 64,
"epochs": 100
}
}
配置文件介绍
- dataset_path: 数据集路径,指定用于训练的数据集位置。
- model_params: 模型参数,包含LSTM单元的数量、批量大小和训练轮数等参数。
通过以上配置文件,用户可以自定义数据集路径和模型参数,以适应不同的训练需求。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5