LMMS-Eval项目中使用自定义数据集评估LLaVA-OneVision模型的技术指南
概述
在视觉语言模型领域,LLaVA-OneVision是基于Qwen/Qwen2-0.5B-Instruct架构的先进模型。本文详细介绍如何在使用LMMS-Eval评估框架时,针对自定义数据集微调后的LLaVA-OneVision模型进行有效评估。
模型评估准备
对于使用自定义数据集微调后的LLaVA-OneVision模型,评估过程主要分为两个关键步骤:
-
模型权重处理:如果采用LoRA微调方式,需要先合并权重文件。与LLaVA-v1.5类似,LLaVA-OneVision也需要运行merge_lora_weights脚本生成最终的safetensors文件。合并后的模型目录应包含完整的模型权重文件,特别是model.safetensors这一关键文件。
-
评估框架配置:LMMS-Eval框架已内置对LLaVA-OneVision的支持,无需额外创建模型类文件。只需在评估命令中通过pretrained参数指定本地模型路径即可。
评估执行方法
准备好模型权重后,可通过以下命令启动评估:
python3 -m accelerate.commands.launch --num_processes=8 -m lmms_eval \
--model llava_onevision \
--model_args pretrained="/path/to/your/model"
其中/path/to/your/model应替换为包含合并后权重文件的本地目录路径。
自定义数据集评估
当需要使用自定义测试数据集时,需要特别注意数据格式转换:
-
数据集格式要求:LMMS-Eval要求数据集以load_dataset兼容的格式组织。与LLaVA-v1.5使用的问答格式不同,这里需要将数据转换为包含图像和对话内容的JSON结构。
-
本地数据集处理:可以使用框架提供的工具脚本将本地图像和标注转换为HuggingFace数据集格式。处理后的数据集应包含图像路径和结构化对话内容。
-
任务配置:需要参考框架文档创建新的任务定义,可借鉴MME、AI2D等现有任务的实现方式。任务配置需定义数据加载、预处理和评价指标等关键环节。
技术要点总结
-
权重合并是LoRA微调后评估的必要步骤,确保生成完整的model.safetensors文件。
-
LMMS-Eval框架对LLaVA-OneVision有原生支持,无需额外开发模型接口代码。
-
自定义数据集需要转换为框架要求的格式,特别注意对话结构的组织方式。
-
评估过程支持分布式加速,可通过num_processes参数控制并行度。
通过以上步骤,研究人员可以有效地评估在特定领域数据上微调后的LLaVA-OneVision模型性能,为模型优化和应用部署提供可靠依据。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









