LMMS-Eval项目中LLaVA模型评估的安装与运行问题解析
2025-07-01 03:21:24作者:乔或婵
问题背景
在LMMS-Eval项目中,用户尝试复现LLaVA模型的评估过程时遇到了多个技术障碍。这些问题主要涉及环境配置、依赖冲突以及模型加载等方面。本文将详细分析这些问题的成因,并提供完整的解决方案。
主要问题分析
1. 依赖冲突问题
用户在安装LLaVA相关依赖时遇到了transformers版本冲突:
- LMMS-Eval要求transformers≥4.36.2
- LLaVA 1.1.3依赖transformers==4.31.0
这种版本冲突是Python环境中常见的问题,特别是在整合多个大型项目时。
2. 参数识别问题
用户遇到了--log_samples_sufix参数未被识别的问题,这实际上是文档中的拼写错误,正确参数应为--log_samples_suffix。
3. 模型加载失败
系统报告无法识别'llava'模型名称,这表明模型加载机制可能存在问题,或者环境配置不完整。
解决方案
环境配置步骤
-
创建并激活conda环境
conda create --name lmms python=3.10 conda activate lmms -
安装LMMS-Eval核心包
pip install --no-deps -U -e . -
安装LLaVA核心包 需要先克隆LLaVA官方仓库,然后执行:
pip install --no-deps -U -e . -
安装依赖包 使用以下依赖列表创建requirements.txt文件:
accelerate==0.21.0 datasets==2.16.1 evaluate==0.4.1 hf_transfer==0.1.6 Jinja2==3.1.3 numpy==1.26.4 openai==1.13.3 packaging==23.2 pandas==2.2.1 Pillow==10.2.0 protobuf==4.25.3 pycocoevalcap==1.2 pycocotools==2.0.7 pytablewriter==1.2.0 pytest==8.0.2 python_Levenshtein==0.25.0 pytz==2024.1 PyYAML==6.0.1 Requests==2.31.0 sacrebleu==2.4.0 scikit_learn==1.2.2 sentencepiece==0.1.99 setuptools==68.2.2 sglang==0.1.12 shortuuid==1.0.12 sqlitedict==2.1.0 tenacity==8.2.3 torch==2.0.1 tokenizers==0.15.2 tqdm==4.66.2 transformers==4.37.2
运行命令
正确的运行命令应为:
accelerate launch --num_processes=8 --main_process_port 12345 -m lmms_eval \
--model llava \
--model_args pretrained="liuhaotian/llava-v1.5-7b,use_flash_attention_2=False" \
--tasks mme \
--batch_size 1 \
--log_samples \
--log_samples_suffix llava_v1.5_mme \
--output_path ./logs/
关键参数说明
use_flash_attention_2=False:禁用Flash Attention 2,避免可能的兼容性问题device_map设置:单GPU环境下可能需要明确指定为"auto"或"cuda"
技术细节
Flash Attention的影响
启用Flash Attention 2会导致评估结果的微小差异:
- 禁用时:认知得分355.71,感知得分1509.99
- 启用时:结果会有轻微变化
这种差异源于Flash Attention实现的计算精度优化。
代码修改建议
如果遇到设备映射问题,可以修改llava.py中的相关代码:
self._device = torch.device("cuda:0")
self.device_map = "cuda:0"
结论
通过正确的环境配置和参数设置,可以成功在LMMS-Eval项目中运行LLaVA模型的评估。关键点包括:
- 使用正确的依赖版本
- 禁用Flash Attention 2以避免兼容性问题
- 确保设备映射正确配置
- 使用正确的命令行参数
这些解决方案不仅适用于LLaVA模型评估,也可以为其他大型语言模型在LMMS-Eval框架中的集成提供参考。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1