LMMS-Eval项目中LLaVA模型评估的安装与运行问题解析
2025-07-01 09:33:27作者:乔或婵
问题背景
在LMMS-Eval项目中,用户尝试复现LLaVA模型的评估过程时遇到了多个技术障碍。这些问题主要涉及环境配置、依赖冲突以及模型加载等方面。本文将详细分析这些问题的成因,并提供完整的解决方案。
主要问题分析
1. 依赖冲突问题
用户在安装LLaVA相关依赖时遇到了transformers版本冲突:
- LMMS-Eval要求transformers≥4.36.2
- LLaVA 1.1.3依赖transformers==4.31.0
这种版本冲突是Python环境中常见的问题,特别是在整合多个大型项目时。
2. 参数识别问题
用户遇到了--log_samples_sufix参数未被识别的问题,这实际上是文档中的拼写错误,正确参数应为--log_samples_suffix。
3. 模型加载失败
系统报告无法识别'llava'模型名称,这表明模型加载机制可能存在问题,或者环境配置不完整。
解决方案
环境配置步骤
-
创建并激活conda环境
conda create --name lmms python=3.10 conda activate lmms -
安装LMMS-Eval核心包
pip install --no-deps -U -e . -
安装LLaVA核心包 需要先克隆LLaVA官方仓库,然后执行:
pip install --no-deps -U -e . -
安装依赖包 使用以下依赖列表创建requirements.txt文件:
accelerate==0.21.0 datasets==2.16.1 evaluate==0.4.1 hf_transfer==0.1.6 Jinja2==3.1.3 numpy==1.26.4 openai==1.13.3 packaging==23.2 pandas==2.2.1 Pillow==10.2.0 protobuf==4.25.3 pycocoevalcap==1.2 pycocotools==2.0.7 pytablewriter==1.2.0 pytest==8.0.2 python_Levenshtein==0.25.0 pytz==2024.1 PyYAML==6.0.1 Requests==2.31.0 sacrebleu==2.4.0 scikit_learn==1.2.2 sentencepiece==0.1.99 setuptools==68.2.2 sglang==0.1.12 shortuuid==1.0.12 sqlitedict==2.1.0 tenacity==8.2.3 torch==2.0.1 tokenizers==0.15.2 tqdm==4.66.2 transformers==4.37.2
运行命令
正确的运行命令应为:
accelerate launch --num_processes=8 --main_process_port 12345 -m lmms_eval \
--model llava \
--model_args pretrained="liuhaotian/llava-v1.5-7b,use_flash_attention_2=False" \
--tasks mme \
--batch_size 1 \
--log_samples \
--log_samples_suffix llava_v1.5_mme \
--output_path ./logs/
关键参数说明
use_flash_attention_2=False:禁用Flash Attention 2,避免可能的兼容性问题device_map设置:单GPU环境下可能需要明确指定为"auto"或"cuda"
技术细节
Flash Attention的影响
启用Flash Attention 2会导致评估结果的微小差异:
- 禁用时:认知得分355.71,感知得分1509.99
- 启用时:结果会有轻微变化
这种差异源于Flash Attention实现的计算精度优化。
代码修改建议
如果遇到设备映射问题,可以修改llava.py中的相关代码:
self._device = torch.device("cuda:0")
self.device_map = "cuda:0"
结论
通过正确的环境配置和参数设置,可以成功在LMMS-Eval项目中运行LLaVA模型的评估。关键点包括:
- 使用正确的依赖版本
- 禁用Flash Attention 2以避免兼容性问题
- 确保设备映射正确配置
- 使用正确的命令行参数
这些解决方案不仅适用于LLaVA模型评估,也可以为其他大型语言模型在LMMS-Eval框架中的集成提供参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19