LMMS-Eval项目中LLaVA模型评估的安装与运行问题解析
2025-07-01 04:06:42作者:乔或婵
问题背景
在LMMS-Eval项目中,用户尝试复现LLaVA模型的评估过程时遇到了多个技术障碍。这些问题主要涉及环境配置、依赖冲突以及模型加载等方面。本文将详细分析这些问题的成因,并提供完整的解决方案。
主要问题分析
1. 依赖冲突问题
用户在安装LLaVA相关依赖时遇到了transformers版本冲突:
- LMMS-Eval要求transformers≥4.36.2
- LLaVA 1.1.3依赖transformers==4.31.0
这种版本冲突是Python环境中常见的问题,特别是在整合多个大型项目时。
2. 参数识别问题
用户遇到了--log_samples_sufix
参数未被识别的问题,这实际上是文档中的拼写错误,正确参数应为--log_samples_suffix
。
3. 模型加载失败
系统报告无法识别'llava'模型名称,这表明模型加载机制可能存在问题,或者环境配置不完整。
解决方案
环境配置步骤
-
创建并激活conda环境
conda create --name lmms python=3.10 conda activate lmms
-
安装LMMS-Eval核心包
pip install --no-deps -U -e .
-
安装LLaVA核心包 需要先克隆LLaVA官方仓库,然后执行:
pip install --no-deps -U -e .
-
安装依赖包 使用以下依赖列表创建requirements.txt文件:
accelerate==0.21.0 datasets==2.16.1 evaluate==0.4.1 hf_transfer==0.1.6 Jinja2==3.1.3 numpy==1.26.4 openai==1.13.3 packaging==23.2 pandas==2.2.1 Pillow==10.2.0 protobuf==4.25.3 pycocoevalcap==1.2 pycocotools==2.0.7 pytablewriter==1.2.0 pytest==8.0.2 python_Levenshtein==0.25.0 pytz==2024.1 PyYAML==6.0.1 Requests==2.31.0 sacrebleu==2.4.0 scikit_learn==1.2.2 sentencepiece==0.1.99 setuptools==68.2.2 sglang==0.1.12 shortuuid==1.0.12 sqlitedict==2.1.0 tenacity==8.2.3 torch==2.0.1 tokenizers==0.15.2 tqdm==4.66.2 transformers==4.37.2
运行命令
正确的运行命令应为:
accelerate launch --num_processes=8 --main_process_port 12345 -m lmms_eval \
--model llava \
--model_args pretrained="liuhaotian/llava-v1.5-7b,use_flash_attention_2=False" \
--tasks mme \
--batch_size 1 \
--log_samples \
--log_samples_suffix llava_v1.5_mme \
--output_path ./logs/
关键参数说明
use_flash_attention_2=False
:禁用Flash Attention 2,避免可能的兼容性问题device_map
设置:单GPU环境下可能需要明确指定为"auto"或"cuda"
技术细节
Flash Attention的影响
启用Flash Attention 2会导致评估结果的微小差异:
- 禁用时:认知得分355.71,感知得分1509.99
- 启用时:结果会有轻微变化
这种差异源于Flash Attention实现的计算精度优化。
代码修改建议
如果遇到设备映射问题,可以修改llava.py
中的相关代码:
self._device = torch.device("cuda:0")
self.device_map = "cuda:0"
结论
通过正确的环境配置和参数设置,可以成功在LMMS-Eval项目中运行LLaVA模型的评估。关键点包括:
- 使用正确的依赖版本
- 禁用Flash Attention 2以避免兼容性问题
- 确保设备映射正确配置
- 使用正确的命令行参数
这些解决方案不仅适用于LLaVA模型评估,也可以为其他大型语言模型在LMMS-Eval框架中的集成提供参考。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5