KubePi 在本地 k3s 集群中的数据持久化解决方案
问题背景
在使用 KubePi 管理本地 k3s 集群时,许多用户会遇到一个常见问题:当集群重启后,KubePi 中的所有配置和数据都会丢失。这是因为默认情况下,KubePi 将数据存储在容器内部的 /var/lib/kubepi/db 目录中,而容器重启后这些临时存储的数据就会消失。
问题分析
KubePi 作为 Kubernetes 集群的管理工具,会存储以下重要数据:
- 集群连接配置
- 用户权限设置
- 操作历史记录
- 其他管理相关数据
这些数据默认存储在容器内部,不具备持久性。对于生产环境或需要长期使用的场景,这种设计显然不能满足需求。
解决方案
要实现 KubePi 数据的持久化,我们需要使用 Kubernetes 的持久化存储机制。具体来说,就是为 KubePi 的 Deployment 挂载一个 PersistentVolumeClaim (PVC),将数据目录映射到持久化存储上。
实现步骤
- 创建持久化存储声明(PVC)
首先需要创建一个 PVC,指定存储大小和访问模式。对于本地 k3s 集群,可以使用local-path存储类:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: kubepi-db-pvc
spec:
accessModes:
- ReadWriteOnce
storageClassName: local-path
resources:
requests:
storage: "1Gi"
- 修改 KubePi Deployment
在原有的 Deployment 配置中,添加对 PVC 的挂载:
apiVersion: apps/v1
kind: Deployment
metadata:
name: kubepi
spec:
template:
spec:
containers:
- name: kubepi
volumeMounts:
- name: kubepi-db-pvc
mountPath: /var/lib/kubepi/db
volumes:
- name: kubepi-db-pvc
persistentVolumeClaim:
claimName: kubepi-db-pvc
- 完整配置示例
结合上述两部分,完整的 KubePi 持久化部署配置如下:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: kubepi-db-pvc
spec:
accessModes:
- ReadWriteOnce
storageClassName: local-path
resources:
requests:
storage: "1Gi"
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: kubepi
labels:
name: kubepi
spec:
replicas: 1
selector:
matchLabels:
name: kubepi
strategy:
rollingUpdate:
maxSurge: 1
maxUnavailable: 0
type: RollingUpdate
template:
metadata:
labels:
name: kubepi
spec:
containers:
- name: kubepi
image: 1panel/kubepi:v1.7.0
imagePullPolicy: IfNotPresent
ports:
- containerPort: 80
protocol: TCP
name: http
volumeMounts:
- mountPath: /etc/localtime
name: time
readOnly: true
- name: kubepi-db-pvc
mountPath: /var/lib/kubepi/db
volumes:
- name: time
hostPath:
path: /etc/localtime
- name: kubepi-db-pvc
persistentVolumeClaim:
claimName: kubepi-db-pvc
---
apiVersion: v1
kind: Service
metadata:
name: kubepi-svc
labels:
name: kubepi
spec:
selector:
name: kubepi
type: ClusterIP
ports:
- port: 80
targetPort: 80
技术要点解析
-
存储类选择
在本地 k3s 集群中,local-path是最常用的存储类,它会在节点上创建本地存储。对于生产环境,建议使用更可靠的存储方案,如 NFS 或云存储。 -
访问模式
ReadWriteOnce表示该卷可以被单个节点以读写方式挂载。对于单副本部署的 KubePi,这种模式完全够用。 -
存储大小
KubePi 的数据量通常不大,1Gi 的存储空间已经足够。如果管理大量集群或有大量操作记录,可以适当增加。 -
时区同步
配置中包含了/etc/localtime的挂载,确保容器内时间与宿主机一致。
验证与测试
部署完成后,可以通过以下步骤验证持久化是否生效:
- 登录 KubePi 并添加一些配置
- 删除 KubePi 的 Pod 让其自动重建
- 重新登录 KubePi,检查之前的配置是否仍然存在
如果一切正常,即使完全重启 k3s 集群,KubePi 中的数据也会得到保留。
总结
通过为 KubePi 配置持久化存储,我们解决了集群重启导致数据丢失的问题。这种方案不仅适用于本地 k3s 集群,稍作修改后也可以应用于各种 Kubernetes 环境。关键点在于正确配置 PVC 并将其挂载到 KubePi 的数据目录。
对于不同的 Kubernetes 环境,只需要调整存储类(storageClassName)和访问模式即可。生产环境中,建议使用网络存储方案以获得更好的可靠性和可扩展性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin06
compass-metrics-modelMetrics model project for the OSS CompassPython00