KubePi 数据持久化配置指南
2025-06-28 05:29:09作者:平淮齐Percy
问题背景
在使用 KubePi 管理本地 k3s 集群时,用户发现当集群重启后,KubePi 中的所有配置数据都会丢失。这是因为默认部署方式下,KubePi 的数据存储在容器内部,没有进行持久化处理。
解决方案
KubePi 的数据默认存储在 /var/lib/kubepi/db
目录下。要实现数据持久化,我们需要为 KubePi 部署配置持久化存储卷(Persistent Volume Claim, PVC)。
持久化部署方案
以下是完整的 KubePi 持久化部署 YAML 配置示例:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: kubepi-db-pvc
spec:
accessModes:
- ReadWriteOnce
storageClassName: local-path
resources:
requests:
storage: "1Gi"
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: kubepi
labels:
name: kubepi
spec:
replicas: 1
selector:
matchLabels:
name: kubepi
strategy:
rollingUpdate:
maxSurge: 1
maxUnavailable: 0
type: RollingUpdate
template:
metadata:
labels:
name: kubepi
spec:
containers:
- name: kubepi
image: 1panel/kubepi:v1.7.0
imagePullPolicy: IfNotPresent
ports:
- containerPort: 80
protocol: TCP
name: http
volumeMounts:
- mountPath: /etc/localtime
name: time
readOnly: true
- name: kubepi-db-pvc
mountPath: /var/lib/kubepi/db
volumes:
- name: time
hostPath:
path: /etc/localtime
- name: kubepi-db-pvc
persistentVolumeClaim:
claimName: kubepi-db-pvc
---
apiVersion: v1
kind: Service
metadata:
name: kubepi-svc
labels:
name: kubepi
spec:
selector:
name: kubepi
type: ClusterIP
ports:
- port: 80
targetPort: 80
关键配置说明
-
PersistentVolumeClaim:
accessModes
: 设置为ReadWriteOnce
,表示卷可以被单个节点以读写方式挂载storageClassName
: 根据集群实际情况配置,本地集群通常使用local-path
storage
: 根据实际需求设置存储大小,1Gi 对 KubePi 来说通常足够
-
Deployment:
- 通过
volumeMounts
将 PVC 挂载到容器的/var/lib/kubepi/db
目录 - 同时挂载了主机时间
/etc/localtime
确保容器时间与主机同步
- 通过
-
Service:
- 使用
ClusterIP
类型服务暴露 KubePi - 可根据需要改为
NodePort
或LoadBalancer
类型
- 使用
不同环境下的调整建议
-
本地 k3s 集群:
- 使用
local-path
作为存储类 - 存储大小可以适当减小
- 使用
-
生产环境:
- 考虑使用更可靠的存储后端,如 NFS、Ceph 等
- 设置
ReadWriteMany
访问模式以便支持多副本部署 - 增加存储容量和资源限制
-
云环境:
- 使用云提供商提供的存储类,如 AWS 的 EBS、Azure 的 Disk 等
- 考虑启用自动扩容功能
验证持久化效果
部署完成后,可以通过以下步骤验证持久化是否生效:
- 在 KubePi 中进行一些配置更改
- 删除 KubePi 的 Pod 让其自动重建
- 检查配置是否仍然存在
- 重启整个集群后再次检查配置持久性
总结
通过为 KubePi 配置持久化存储,可以确保集群管理数据在容器重启或集群重启后不会丢失。这对于生产环境尤为重要,可以避免每次重启后都需要重新配置集群信息的麻烦。根据实际环境选择合适的存储后端和配置参数,可以平衡性能、可靠性和成本。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
509