MMAction2中使用RawFrameDataset训练MViT模型的问题分析与解决
问题背景
在使用MMAction2框架训练MViT(Multiscale Vision Transformer)模型时,当采用RawFrameDataset作为数据集类型时,可能会遇到一个形状不匹配的错误。这个错误通常发生在模型训练过程中计算top-k准确率时,具体表现为输入张量和标签张量的形状无法广播对齐。
错误现象
错误信息显示在计算top-k准确率时,输入张量的形状为(12,5),而标签张量的形状为(4,1,7),导致广播操作失败。这种形状不匹配的根本原因与配置文件中的num_clips参数设置有关。
根本原因分析
-
num_clips参数的影响:当设置
num_clips=3时,模型会对每个视频样本生成3个剪辑片段,这会导致输入数据的维度扩展。例如,原始batch size为4时,实际输入会变为4×3=12个剪辑片段。 -
标签处理不一致:虽然输入数据通过
num_clips参数进行了扩展,但标签数据没有相应地复制扩展。这导致了输入张量(12个剪辑片段)和标签张量(4个原始样本)之间的维度不匹配。 -
形状转换问题:在计算准确率时,
top_k_accuracy函数期望输入和标签的形状能够广播对齐,但由于上述原因,形状(12,5)和(4,1,7)无法直接比较。
解决方案
针对这个问题,有以下几种解决方案:
-
设置num_clips=1:这是最简单的解决方案,可以确保输入和标签的形状一致。修改后的配置如下:
train_pipeline = [ dict(type="SampleFrames", clip_len=clip_len, frame_interval=1, num_clips=1), # 其他pipeline步骤保持不变 ] -
调整标签处理逻辑:如果需要使用多个剪辑片段(num_clips>1),可以修改模型头部或评估逻辑,确保标签数据能够正确复制以匹配输入数据的形状。
-
自定义准确率计算:实现一个自定义的准确率计算函数,能够正确处理多剪辑片段情况下的标签匹配。
最佳实践建议
-
理解num_clips参数:在使用多剪辑片段采样时,要充分理解其对数据形状的影响,并确保所有相关组件都能正确处理这种扩展。
-
形状一致性检查:在开发自定义模型或修改配置时,应该添加形状检查逻辑,确保输入和标签的形状兼容。
-
逐步调试:遇到形状不匹配问题时,可以逐步打印各阶段的张量形状,帮助定位问题发生的具体位置。
-
参考官方示例:MMAction2提供了丰富的模型配置示例,建议在修改配置前先参考类似任务的官方配置。
总结
在MMAction2框架中使用RawFrameDataset训练MViT模型时,num_clips参数的设置需要特别注意其对数据形状的影响。通过合理配置采样参数或调整模型处理逻辑,可以避免这类形状不匹配的问题。对于大多数应用场景,设置num_clips=1是最简单可靠的解决方案,除非有特殊需求需要使用多剪辑片段增强。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00