首页
/ MMAction2中使用RawFrameDataset训练MViT模型的问题分析与解决

MMAction2中使用RawFrameDataset训练MViT模型的问题分析与解决

2025-06-12 18:36:13作者:谭伦延

问题背景

在使用MMAction2框架训练MViT(Multiscale Vision Transformer)模型时,当采用RawFrameDataset作为数据集类型时,可能会遇到一个形状不匹配的错误。这个错误通常发生在模型训练过程中计算top-k准确率时,具体表现为输入张量和标签张量的形状无法广播对齐。

错误现象

错误信息显示在计算top-k准确率时,输入张量的形状为(12,5),而标签张量的形状为(4,1,7),导致广播操作失败。这种形状不匹配的根本原因与配置文件中的num_clips参数设置有关。

根本原因分析

  1. num_clips参数的影响:当设置num_clips=3时,模型会对每个视频样本生成3个剪辑片段,这会导致输入数据的维度扩展。例如,原始batch size为4时,实际输入会变为4×3=12个剪辑片段。

  2. 标签处理不一致:虽然输入数据通过num_clips参数进行了扩展,但标签数据没有相应地复制扩展。这导致了输入张量(12个剪辑片段)和标签张量(4个原始样本)之间的维度不匹配。

  3. 形状转换问题:在计算准确率时,top_k_accuracy函数期望输入和标签的形状能够广播对齐,但由于上述原因,形状(12,5)和(4,1,7)无法直接比较。

解决方案

针对这个问题,有以下几种解决方案:

  1. 设置num_clips=1:这是最简单的解决方案,可以确保输入和标签的形状一致。修改后的配置如下:

    train_pipeline = [
        dict(type="SampleFrames", clip_len=clip_len, frame_interval=1, num_clips=1),
        # 其他pipeline步骤保持不变
    ]
    
  2. 调整标签处理逻辑:如果需要使用多个剪辑片段(num_clips>1),可以修改模型头部或评估逻辑,确保标签数据能够正确复制以匹配输入数据的形状。

  3. 自定义准确率计算:实现一个自定义的准确率计算函数,能够正确处理多剪辑片段情况下的标签匹配。

最佳实践建议

  1. 理解num_clips参数:在使用多剪辑片段采样时,要充分理解其对数据形状的影响,并确保所有相关组件都能正确处理这种扩展。

  2. 形状一致性检查:在开发自定义模型或修改配置时,应该添加形状检查逻辑,确保输入和标签的形状兼容。

  3. 逐步调试:遇到形状不匹配问题时,可以逐步打印各阶段的张量形状,帮助定位问题发生的具体位置。

  4. 参考官方示例:MMAction2提供了丰富的模型配置示例,建议在修改配置前先参考类似任务的官方配置。

总结

在MMAction2框架中使用RawFrameDataset训练MViT模型时,num_clips参数的设置需要特别注意其对数据形状的影响。通过合理配置采样参数或调整模型处理逻辑,可以避免这类形状不匹配的问题。对于大多数应用场景,设置num_clips=1是最简单可靠的解决方案,除非有特殊需求需要使用多剪辑片段增强。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
163
2.05 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
199
279
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
951
557
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
70
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0