generative-recommenders安装与使用指南
2024-08-23 06:47:48作者:霍妲思
项目概述
generative-recommenders 是由Facebook Research开发的一个开源项目,专注于利用生成模型进行推荐系统的研究和实现。这个项目提供了一套强大的工具,帮助开发者和研究人员探索生成式方法在大规模推荐场景中的应用。
项目目录结构及介绍
generative-recommenders/
│
├── LICENSE
├── README.md - 项目的主要说明文件,包含快速入门和贡献指南。
├── examples/ - 示例代码,展示如何使用库的不同功能。
│ ├── basic_usage.py - 基本使用案例。
│
├── generative_recommenders/ - 核心源码包。
│ ├── __init__.py
│ ├── models/ - 包含所有生成式推荐模型的实现。
│ ├── utils/ - 辅助函数和工具集。
│
├── requirements.txt - 项目运行所需的依赖列表。
├── setup.py - Python包的安装脚本。
└── tests/ - 单元测试代码。
项目的启动文件介绍
主要的启动入口并不直接体现在一个单独的“启动文件”中,而是通过示例脚本examples/basic_usage.py来引导用户开始使用。用户可以从此文件入手,了解如何导入项目库,初始化模型,训练以及评估推荐系统。通常,对于新的使用者来说,从修改和运行此示例开始是最佳实践。
项目的配置文件介绍
尽管该项目在GitHub页面上并未直接提供一个典型的配置文件作为独立文件展示,配置主要是通过代码内的参数设置完成的。这意味着,模型的配置、训练参数等信息是通过调用API时传入的参数来定制的。例如,在使用特定模型时,你可能需要调整学习率、批次大小、模型层数等参数。这些配置嵌入到如basic_usage.py这样的示例或用户的主脚本中,形成了灵活但需手动管理的配置方式。
为了模拟一个结构化的配置流程,用户可以参考以下伪代码结构来创建自己的配置文件:
# 配置示例
config = {
'model': {
'type': 'GRModel', # 指定模型类型
'params': { # 模型特定参数
'embedding_dim': 64,
'hidden_units': [256, 128],
}
},
'training': {
'epochs': 10,
'batch_size': 1024,
'learning_rate': 0.001,
},
}
随后在程序中读取并使用这些配置值来初始化模型和训练过程。
以上是对generative-recommenders项目基于提供的信息进行的基本结构介绍、启动文件概览和配置文件的概念性解析。实际操作时,深入阅读项目文档和源代码将是理解其全部特性和细节的关键。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.66 K
Ascend Extension for PyTorch
Python
131
159
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
458
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
221
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.48 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
206