首页
/ 在api-for-open-llm项目中部署34B大模型的显存优化实践

在api-for-open-llm项目中部署34B大模型的显存优化实践

2025-07-01 00:48:48作者:尤峻淳Whitney

在部署大型语言模型时,显存不足是开发者经常遇到的挑战之一。本文将以api-for-open-llm项目为例,详细介绍如何在单张24GB显存的NVIDIA 4090 GPU上成功部署34B参数规模的量化模型。

量化技术选择与实现

api-for-open-llm项目支持多种量化技术,但需要特别注意不同量化方式的实现差异。VLLM引擎不支持BNB(Bitsandbytes)的4bit在线量化方式,这意味着开发者不能简单地通过设置load_in_4bit参数来实现模型量化。

对于34B规模的模型,推荐使用GPTQ或AWQ这两种量化方法。这两种方法都需要预先对模型权重进行离线量化处理,而不是在加载时实时量化。这种离线量化方式能够更有效地减少显存占用,同时保持较好的推理质量。

量化模型部署配置

成功部署34B量化模型需要正确配置环境参数。关键配置包括:

  1. 设置ENGINE=vllm以启用VLLM推理引擎
  2. 指定QUANTIZATION_METHOD为awq或gptq
  3. 合理设置GPU_MEMORY_UTILIZATION参数
  4. 控制TENSOR_PARALLEL_SIZE以适应单卡部署

值得注意的是,即使使用了4bit量化,34B模型的显存占用仍然相当可观。实际部署时需要根据显存容量调整最大上下文长度(max_seq_len)参数,过长的上下文会导致显存溢出。

实践中的问题解决

在具体实践中,开发者可能会遇到即使使用AWQ量化后仍然出现显存不足的情况。这通常是由于以下原因:

  1. 上下文长度设置过大
  2. GPU内存碎片化
  3. 量化参数配置不当

解决方案包括:

  • 逐步降低上下文长度直到显存占用合理
  • 调整max_split_size_mb参数减少内存碎片
  • 确保量化配置与模型权重类型匹配

性能优化建议

为了在有限显存下获得最佳性能,建议:

  1. 优先使用AWQ量化,它在保持精度的同时通常能提供更好的性能
  2. 根据实际应用场景平衡上下文长度和批处理大小
  3. 监控GPU内存使用情况,找到最优的GPU_MEMORY_UTILIZATION值
  4. 考虑使用更高效的注意力机制实现

通过以上优化措施,开发者可以在单张24GB显存的GPU上成功部署和运行34B参数规模的LLM模型,为资源受限环境下的模型部署提供了可行方案。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8