HiAGM:层次文本分类的层次感知全局模型
2024-09-16 19:53:53作者:鲍丁臣Ursa
项目介绍
在自然语言处理领域,文本分类是一个基础且重要的任务。然而,传统的文本分类模型往往忽略了标签之间的层次结构,这在处理具有层次关系的标签时显得尤为不足。为了解决这一问题,我们推出了HiAGM(Hierarchy-Aware Global Model),这是一个层次感知的全局模型,专门用于层次文本分类。
HiAGM通过引入层次感知结构编码器,实现了标签空间与文本特征之间的相互作用,从而显著提升了模型的分类性能。该项目已在ACL 2020上发表,并获得了广泛的关注。
项目技术分析
层次感知结构编码器
HiAGM的核心在于其层次感知结构编码器,主要包括以下两个部分:
- 双向TreeLSTM:通过
weighted_tree_lstm.py和tree.py实现,能够在处理层次结构数据时捕捉到更丰富的上下文信息。 - 层次GCN(Graph Convolutional Network):通过
graphcnn.py实现,能够有效地在图结构数据上进行特征传播和聚合。
模型架构
HiAGM的模型架构设计精巧,主要包括以下几个模块:
- 配置文件:使用JSON格式,方便用户自定义模型参数。
- 数据处理:提供了数据预处理工具,支持多种数据集的预处理,如NYTimes和WoS。
- 模型组件:包括结构模型、嵌入层、文本编码器等,特别是HiAGM-TP(Text Propagation)和HiAGM-LA(Multi-Label Attention)模块,进一步提升了模型的表现。
- 训练模块:提供了优化器、学习率衰减、早停等功能,确保模型训练的高效性和稳定性。
项目及技术应用场景
HiAGM适用于多种需要层次文本分类的场景,例如:
- 新闻分类:能够根据新闻内容的层次结构,自动分类到相应的主题和子主题。
- 学术论文分类:能够根据论文的内容和结构,自动分类到相应的研究领域和子领域。
- 文档管理系统:能够根据文档的内容和层次结构,自动分类和归档。
项目特点
- 层次感知:通过引入层次感知结构编码器,能够更好地捕捉标签之间的层次关系,提升分类准确性。
- 模块化设计:模型架构设计模块化,方便用户根据需求进行定制和扩展。
- 高效训练:提供了多种训练优化工具,如学习率衰减、早停等,确保模型训练的高效性和稳定性。
- 广泛适用:支持多种数据集的预处理和训练,适用于多种层次文本分类场景。
结语
HiAGM是一个创新且实用的层次文本分类模型,通过引入层次感知结构编码器,显著提升了模型的分类性能。无论是在新闻分类、学术论文分类还是文档管理系统中,HiAGM都能发挥其强大的分类能力。如果你正在寻找一个高效且灵活的层次文本分类解决方案,HiAGM绝对值得一试!
参考文献:
@article{jie2020hierarchy,
title={Hierarchy-Aware Global Model for Hierarchical Text Classification},
author={Jie Zhou, Chunping Ma, Dingkun Long, Guangwei Xu, Ning Ding, Haoyu Zhang, Pengjun Xie, Gongshen Liu},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)},
year={2020}
}
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355