Verilator覆盖率工具中LCov文件生成的优化方案
Verilator作为一款开源的硬件仿真和验证工具,其内置的代码覆盖率功能对于验证工程师至关重要。近期社区发现Verilator生成的LCov覆盖率文件存在信息丢失的问题,本文将深入分析该问题及其解决方案。
问题背景
在Verilator生成的LCov覆盖率文件中,分支覆盖率信息未能完整保留。LCov格式本身支持分支覆盖率的记录,但Verilator当前的实现未能充分利用这一特性,导致生成的覆盖率报告在某些情况下会出现信息缺失或显示不准确的问题。
技术分析
LCov文件格式包含多个记录类型,其中分支覆盖率信息通过以下方式记录:
- BRDA:记录分支数据
- BRH:记录分支命中次数
- BRNH:记录分支未命中次数
Verilator当前的覆盖率实现主要关注语句和条件覆盖,但对分支覆盖的支持不够完善。这导致在使用genhtml等工具生成可视化报告时,分支覆盖率显示不完整,影响验证工程师对代码覆盖情况的准确判断。
解决方案
优化方案主要涉及以下几个方面:
-
完善分支覆盖率记录:在VlcSource类中增加对分支覆盖率的完整记录,确保所有分支点都被正确标记和统计。
-
LCov文件生成优化:修改覆盖率数据输出逻辑,确保生成的.lcov文件包含完整的BRDA、BRH和BRNH记录。
-
构建系统适配:由于涉及核心覆盖率组件的修改,需要确保构建系统能正确识别相关源文件的变更并重新编译。
实现细节
在具体实现上,需要重点关注:
-
分支点识别:在Verilator的代码解析阶段,需要准确识别所有的分支点,包括if-else条件、case语句等。
-
覆盖率数据收集:在执行仿真时,需要记录每个分支的执行路径,包括命中次数和未命中情况。
-
数据输出格式:严格按照LCov规范输出分支覆盖率数据,确保与其他覆盖率分析工具的兼容性。
验证方法
为确保修改的正确性,可以采用以下验证手段:
-
单元测试:为修改后的覆盖率组件编写专门的单元测试用例。
-
回归测试:使用现有的测试套件验证修改是否影响原有功能。
-
可视化验证:通过genhtml、gcovr等工具检查生成的覆盖率报告是否完整显示分支覆盖率信息。
结语
通过本次优化,Verilator的覆盖率功能将更加完善,能够为验证工程师提供更全面、准确的代码覆盖信息。这不仅有助于提高验证质量,也能更好地支持复杂设计的验证工作。该改进已经合并到主分支,用户可以通过更新到最新版本获得这一功能增强。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00