Verilator覆盖率工具中LCov文件生成的优化方案
Verilator作为一款开源的硬件仿真和验证工具,其内置的代码覆盖率功能对于验证工程师至关重要。近期社区发现Verilator生成的LCov覆盖率文件存在信息丢失的问题,本文将深入分析该问题及其解决方案。
问题背景
在Verilator生成的LCov覆盖率文件中,分支覆盖率信息未能完整保留。LCov格式本身支持分支覆盖率的记录,但Verilator当前的实现未能充分利用这一特性,导致生成的覆盖率报告在某些情况下会出现信息缺失或显示不准确的问题。
技术分析
LCov文件格式包含多个记录类型,其中分支覆盖率信息通过以下方式记录:
- BRDA:记录分支数据
- BRH:记录分支命中次数
- BRNH:记录分支未命中次数
Verilator当前的覆盖率实现主要关注语句和条件覆盖,但对分支覆盖的支持不够完善。这导致在使用genhtml等工具生成可视化报告时,分支覆盖率显示不完整,影响验证工程师对代码覆盖情况的准确判断。
解决方案
优化方案主要涉及以下几个方面:
-
完善分支覆盖率记录:在VlcSource类中增加对分支覆盖率的完整记录,确保所有分支点都被正确标记和统计。
-
LCov文件生成优化:修改覆盖率数据输出逻辑,确保生成的.lcov文件包含完整的BRDA、BRH和BRNH记录。
-
构建系统适配:由于涉及核心覆盖率组件的修改,需要确保构建系统能正确识别相关源文件的变更并重新编译。
实现细节
在具体实现上,需要重点关注:
-
分支点识别:在Verilator的代码解析阶段,需要准确识别所有的分支点,包括if-else条件、case语句等。
-
覆盖率数据收集:在执行仿真时,需要记录每个分支的执行路径,包括命中次数和未命中情况。
-
数据输出格式:严格按照LCov规范输出分支覆盖率数据,确保与其他覆盖率分析工具的兼容性。
验证方法
为确保修改的正确性,可以采用以下验证手段:
-
单元测试:为修改后的覆盖率组件编写专门的单元测试用例。
-
回归测试:使用现有的测试套件验证修改是否影响原有功能。
-
可视化验证:通过genhtml、gcovr等工具检查生成的覆盖率报告是否完整显示分支覆盖率信息。
结语
通过本次优化,Verilator的覆盖率功能将更加完善,能够为验证工程师提供更全面、准确的代码覆盖信息。这不仅有助于提高验证质量,也能更好地支持复杂设计的验证工作。该改进已经合并到主分支,用户可以通过更新到最新版本获得这一功能增强。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00