OpenRLHF多机环境下vLLM引擎性能问题分析与优化
2025-06-02 17:52:06作者:龚格成
问题背景
在OpenRLHF项目的多机分布式训练场景中,当采用colocate all model策略时,vLLM引擎的GPU资源分配存在跨节点问题,导致推理性能显著下降。特别是在tensor parallel (TP)大于等于2的情况下,这一问题尤为突出。
问题现象
- 资源分配问题:vLLM引擎的GPU资源在多机环境下被分配到不同物理节点上,导致跨机通信开销增加
- 性能差异:不同vLLM引擎之间存在巨大性能差距,TP=1时性能正常,TP≥2时推理速度显著下降
- 吞吐量下降:在训练流程开始后,vLLM引擎的吞吐量从初始的6000+ tokens/s骤降至1500+ tokens/s
技术分析
资源分配机制问题
OpenRLHF当前通过placement group(PG)的bundle indices来分配vLLM资源。在TP=2情况下,预期0-1 bundles分配给第一个vLLM引擎,2-3 bundles分配给第二个vLLM引擎。然而:
- Ray的PG创建算法(BundleSchedulingPolicy::SortRequiredResources)不是稳定排序
- 多机环境下可能导致同一vLLM引擎的GPU分散在不同节点上
- 跨节点通信显著增加了延迟和带宽压力
性能下降原因
- 跨节点通信开销:TP≥2时,模型并行需要在不同GPU间频繁交换中间结果
- 资源竞争:训练和推理任务共享节点资源,可能导致带宽争用
- 调度延迟:Ray的任务调度可能引入额外开销
- 批次处理效率:不同引擎处理的请求长度可能不均,导致吞吐差异
解决方案
资源分配优化
通过分析placement group的实际分配情况,确保同一vLLM引擎的GPU位于同一节点:
def get_vllm_indices(placement_group, index, tensor_parallel_size):
pg_infos = ray.util.placement_group_table(placement_group)
bundles_to_node_id = pg_infos['bundles_to_node_id']
from collections import defaultdict
node_id_to_bundles = defaultdict(list)
for bundle_index, node_id in bundles_to_node_id.items():
node_id_to_bundles[node_id].append(bundle_index)
same_node_bundle_indices = []
for node_id in node_id_to_bundles.keys():
same_node_bundle_indices.extend(node_id_to_bundles[node_id])
return same_node_bundle_indices[index * tensor_parallel_size: (index+1) * tensor_parallel_size]
性能调优建议
-
节点分配策略:
- 优先保证vLLM引擎独占节点
- 采用对称分配,如双机16卡场景下:
- 节点1:6卡actor_ref + 2卡vLLM
- 节点2:6卡actor_ref + 2卡vLLM
-
参数配置优化:
- 适当降低
generate_max_len以控制内存使用 - 启用
flash_attn减少显存占用 - 使用
gradient_checkpointing节省显存 - 设置
vllm_sync_backend nccl优化通信
- 适当降低
-
训练策略调整:
- 采用较小的
micro_rollout_batch_size - 合理设置
n_samples_per_prompt - 启用
adam_offload减轻显存压力
- 采用较小的
实践经验
-
模型规模与资源配置:
- 7B模型:单机可支持16k长度,3机24卡可支持20k长度
- 32B模型:需要更多资源和更精细的调优
-
常见问题处理:
- OOM问题:检查deepspeed版本,启用zero stage 3
- 性能波动:监控各引擎吞吐,调整负载均衡
- 通信超时:优化NCCL参数,检查网络状况
结论
OpenRLHF在多机环境下的性能优化需要综合考虑资源分配、通信效率和参数配置。通过合理的节点分配策略和参数调优,可以显著提升训练效率和稳定性。对于大规模模型训练,建议采用渐进式策略,从小规模测试开始,逐步扩展至全规模训练。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
310
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1