OpenRLHF多机环境下vLLM引擎性能问题分析与优化
2025-06-02 21:05:27作者:龚格成
问题背景
在OpenRLHF项目的多机分布式训练场景中,当采用colocate all model策略时,vLLM引擎的GPU资源分配存在跨节点问题,导致推理性能显著下降。特别是在tensor parallel (TP)大于等于2的情况下,这一问题尤为突出。
问题现象
- 资源分配问题:vLLM引擎的GPU资源在多机环境下被分配到不同物理节点上,导致跨机通信开销增加
- 性能差异:不同vLLM引擎之间存在巨大性能差距,TP=1时性能正常,TP≥2时推理速度显著下降
- 吞吐量下降:在训练流程开始后,vLLM引擎的吞吐量从初始的6000+ tokens/s骤降至1500+ tokens/s
技术分析
资源分配机制问题
OpenRLHF当前通过placement group(PG)的bundle indices来分配vLLM资源。在TP=2情况下,预期0-1 bundles分配给第一个vLLM引擎,2-3 bundles分配给第二个vLLM引擎。然而:
- Ray的PG创建算法(BundleSchedulingPolicy::SortRequiredResources)不是稳定排序
- 多机环境下可能导致同一vLLM引擎的GPU分散在不同节点上
- 跨节点通信显著增加了延迟和带宽压力
性能下降原因
- 跨节点通信开销:TP≥2时,模型并行需要在不同GPU间频繁交换中间结果
- 资源竞争:训练和推理任务共享节点资源,可能导致带宽争用
- 调度延迟:Ray的任务调度可能引入额外开销
- 批次处理效率:不同引擎处理的请求长度可能不均,导致吞吐差异
解决方案
资源分配优化
通过分析placement group的实际分配情况,确保同一vLLM引擎的GPU位于同一节点:
def get_vllm_indices(placement_group, index, tensor_parallel_size):
pg_infos = ray.util.placement_group_table(placement_group)
bundles_to_node_id = pg_infos['bundles_to_node_id']
from collections import defaultdict
node_id_to_bundles = defaultdict(list)
for bundle_index, node_id in bundles_to_node_id.items():
node_id_to_bundles[node_id].append(bundle_index)
same_node_bundle_indices = []
for node_id in node_id_to_bundles.keys():
same_node_bundle_indices.extend(node_id_to_bundles[node_id])
return same_node_bundle_indices[index * tensor_parallel_size: (index+1) * tensor_parallel_size]
性能调优建议
-
节点分配策略:
- 优先保证vLLM引擎独占节点
- 采用对称分配,如双机16卡场景下:
- 节点1:6卡actor_ref + 2卡vLLM
- 节点2:6卡actor_ref + 2卡vLLM
-
参数配置优化:
- 适当降低
generate_max_len以控制内存使用 - 启用
flash_attn减少显存占用 - 使用
gradient_checkpointing节省显存 - 设置
vllm_sync_backend nccl优化通信
- 适当降低
-
训练策略调整:
- 采用较小的
micro_rollout_batch_size - 合理设置
n_samples_per_prompt - 启用
adam_offload减轻显存压力
- 采用较小的
实践经验
-
模型规模与资源配置:
- 7B模型:单机可支持16k长度,3机24卡可支持20k长度
- 32B模型:需要更多资源和更精细的调优
-
常见问题处理:
- OOM问题:检查deepspeed版本,启用zero stage 3
- 性能波动:监控各引擎吞吐,调整负载均衡
- 通信超时:优化NCCL参数,检查网络状况
结论
OpenRLHF在多机环境下的性能优化需要综合考虑资源分配、通信效率和参数配置。通过合理的节点分配策略和参数调优,可以显著提升训练效率和稳定性。对于大规模模型训练,建议采用渐进式策略,从小规模测试开始,逐步扩展至全规模训练。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210