从GSE数据集创建Seurat对象的技术指南
2025-07-02 01:55:48作者:凤尚柏Louis
背景介绍
Seurat是一个广泛使用的单细胞RNA测序数据分析工具包,它提供了从原始数据到高级分析的一整套解决方案。在实际研究中,研究人员经常需要将公开可用的GEO(Gene Expression Omnibus)数据集转换为Seurat对象进行分析。本文将以GSE146100数据集为例,详细介绍如何将GSE数据集转换为Seurat对象的技术流程。
数据准备
首先需要从GEO数据库下载目标数据集。GSE146100数据集提供了经过标准化的表达矩阵文件"GSE146100_NormData.txt.gz"。这个文件通常包含基因表达矩阵,其中行代表基因,列代表细胞或样本。
数据读取
使用R语言读取压缩的表达矩阵文件:
expression_data <- read.delim("GSE146100_NormData.txt.gz",
header = TRUE,
stringsAsFactors = FALSE)
读取后,建议检查数据结构和维度,确保基因在行,细胞在列。可以使用View(expression_data)或head(expression_data)进行初步检查。
数据转换
将读取的数据框转换为矩阵格式,这是创建Seurat对象的前提:
expression_matrix <- as.matrix(expression_data)
创建Seurat对象
Seurat包提供了创建对象的专用函数:
# 首先创建Assay对象
assay_data <- CreateAssayObject(counts = expression_matrix)
# 然后创建完整的Seurat对象
seurat_obj <- CreateSeuratObject(assay_data)
数据质量控制
创建Seurat对象后,建议进行基本的数据质量控制:
# 计算线粒体基因比例
seurat_obj[["percent.mt"]] <- PercentageFeatureSet(seurat_obj, pattern = "^MT-")
# 可视化QC指标
VlnPlot(seurat_obj, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
数据标准化
对于已经标准化的GSE数据,可以跳过标准化步骤。但如果是原始计数数据,需要进行标准化:
seurat_obj <- NormalizeData(seurat_obj,
normalization.method = "LogNormalize",
scale.factor = 10000)
特征选择和缩放
# 选择高变基因
seurat_obj <- FindVariableFeatures(seurat_obj,
selection.method = "vst",
nfeatures = 2000)
# 缩放数据
seurat_obj <- ScaleData(seurat_obj)
注意事项
- 对于不同的GSE数据集,数据格式可能有所不同,需要根据实际情况调整读取参数
- 如果数据已经标准化,注意不要重复标准化
- 检查基因名和细胞标识符是否符合预期
- 对于大型数据集,考虑使用稀疏矩阵存储以节省内存
总结
将GSE数据集转换为Seurat对象是单细胞数据分析的重要第一步。通过上述步骤,研究人员可以快速将公共数据整合到自己的分析流程中,利用Seurat强大的分析功能进行下游分析。掌握这一技术流程有助于提高研究效率和数据复用的可能性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
141
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111