从GSE数据集创建Seurat对象的技术指南
2025-07-02 20:45:30作者:凤尚柏Louis
背景介绍
Seurat是一个广泛使用的单细胞RNA测序数据分析工具包,它提供了从原始数据到高级分析的一整套解决方案。在实际研究中,研究人员经常需要将公开可用的GEO(Gene Expression Omnibus)数据集转换为Seurat对象进行分析。本文将以GSE146100数据集为例,详细介绍如何将GSE数据集转换为Seurat对象的技术流程。
数据准备
首先需要从GEO数据库下载目标数据集。GSE146100数据集提供了经过标准化的表达矩阵文件"GSE146100_NormData.txt.gz"。这个文件通常包含基因表达矩阵,其中行代表基因,列代表细胞或样本。
数据读取
使用R语言读取压缩的表达矩阵文件:
expression_data <- read.delim("GSE146100_NormData.txt.gz",
header = TRUE,
stringsAsFactors = FALSE)
读取后,建议检查数据结构和维度,确保基因在行,细胞在列。可以使用View(expression_data)或head(expression_data)进行初步检查。
数据转换
将读取的数据框转换为矩阵格式,这是创建Seurat对象的前提:
expression_matrix <- as.matrix(expression_data)
创建Seurat对象
Seurat包提供了创建对象的专用函数:
# 首先创建Assay对象
assay_data <- CreateAssayObject(counts = expression_matrix)
# 然后创建完整的Seurat对象
seurat_obj <- CreateSeuratObject(assay_data)
数据质量控制
创建Seurat对象后,建议进行基本的数据质量控制:
# 计算线粒体基因比例
seurat_obj[["percent.mt"]] <- PercentageFeatureSet(seurat_obj, pattern = "^MT-")
# 可视化QC指标
VlnPlot(seurat_obj, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
数据标准化
对于已经标准化的GSE数据,可以跳过标准化步骤。但如果是原始计数数据,需要进行标准化:
seurat_obj <- NormalizeData(seurat_obj,
normalization.method = "LogNormalize",
scale.factor = 10000)
特征选择和缩放
# 选择高变基因
seurat_obj <- FindVariableFeatures(seurat_obj,
selection.method = "vst",
nfeatures = 2000)
# 缩放数据
seurat_obj <- ScaleData(seurat_obj)
注意事项
- 对于不同的GSE数据集,数据格式可能有所不同,需要根据实际情况调整读取参数
- 如果数据已经标准化,注意不要重复标准化
- 检查基因名和细胞标识符是否符合预期
- 对于大型数据集,考虑使用稀疏矩阵存储以节省内存
总结
将GSE数据集转换为Seurat对象是单细胞数据分析的重要第一步。通过上述步骤,研究人员可以快速将公共数据整合到自己的分析流程中,利用Seurat强大的分析功能进行下游分析。掌握这一技术流程有助于提高研究效率和数据复用的可能性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759