Apache Arrow 技术文档
2024-12-23 01:16:19作者:伍希望
1. 安装指南
1.1 系统要求
在安装 Apache Arrow 之前,请确保您的系统满足以下要求:
- 支持的操作系统:Linux、macOS、Windows
- 支持的编程语言:C++、C#、Go、Java、JavaScript、Python、R、Ruby、Rust
1.2 安装步骤
1.2.1 使用包管理器安装
对于不同的编程语言,可以使用相应的包管理器进行安装:
- Python:
pip install pyarrow
- R:
install.packages("arrow")
- Java: 使用 Maven 或 Gradle 添加依赖
- C++: 从源码编译或使用包管理器(如 apt、yum)
1.2.2 从源码编译
- 克隆仓库:
git clone https://github.com/apache/arrow.git
- 进入目录:
cd arrow
- 根据您的编程语言选择相应的子目录(如
cpp
、python
) - 按照子目录中的
README.md
文件进行编译和安装
2. 项目的使用说明
2.1 基本概念
Apache Arrow 是一个用于内存分析的开发平台,包含一系列技术,用于加速大数据系统的数据处理和传输。主要组件包括:
- Arrow 列式内存格式:高效的标准化内存表示
- Arrow IPC 格式:用于进程间通信的高效序列化格式
- Arrow Flight RPC 协议:基于 Arrow IPC 的远程服务通信协议
2.2 使用示例
2.2.1 Python 示例
import pyarrow as pa
# 创建一个 Arrow 表
table = pa.table({'column1': [1, 2, 3], 'column2': ['a', 'b', 'c']})
# 打印表内容
print(table)
2.2.2 C++ 示例
#include <arrow/api.h>
#include <iostream>
int main() {
arrow::Int64Builder builder;
builder.Append(1);
builder.Append(2);
builder.Append(3);
std::shared_ptr<arrow::Array> array;
builder.Finish(&array);
std::cout << array->ToString() << std::endl;
return 0;
}
3. 项目API使用文档
3.1 Python API
3.1.1 pyarrow.Table
- 创建表:
pyarrow.table(data)
- 访问列:
table['column_name']
- 转换为 Pandas DataFrame:
table.to_pandas()
3.1.2 pyarrow.ipc
- 写入文件:
pyarrow.ipc.write_table(table, file)
- 读取文件:
pyarrow.ipc.read_table(file)
3.2 C++ API
3.2.1 arrow::Table
- 创建表:
arrow::Table::Make(schema, columns)
- 访问列:
table->column(index)
3.2.2 arrow::ipc
- 写入文件:
arrow::ipc::WriteTable(table, file)
- 读取文件:
arrow::ipc::ReadTable(file)
4. 项目安装方式
4.1 使用包管理器
- Python:
pip install pyarrow
- R:
install.packages("arrow")
- Java: 使用 Maven 或 Gradle 添加依赖
- C++: 使用包管理器(如 apt、yum)
4.2 从源码编译
- 克隆仓库:
git clone https://github.com/apache/arrow.git
- 进入目录:
cd arrow
- 根据您的编程语言选择相应的子目录(如
cpp
、python
) - 按照子目录中的
README.md
文件进行编译和安装
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133